

Scalar product and event plane methods for measurements of the azimuthal anisotropy in Pb+Pb and Xe+Xe collisions with the ATLAS detector at the LHC

> Klaudia Burka, on behalf of the ATLAS Collaboration Institute of Nuclear Physics PAN, Cracow, Poland

> > QM2018, Venezia, Italy, 13-19.05.2018

ABSTRACT

Measurements of the azimuthal anisotropy of charged particles in heavy-ion collisions are sensitive to properties of the quark-gluon plasma, in particular its dependence on initial conditions, transport coefficients and time evolution. The presented measurements are based on $\sqrt{s_{\rm NN}} = 5.02$ TeV Pb+Pb and $\sqrt{s_{\rm NN}} = 5.44$ TeV Xe+Xe data collected by the ATLAS detector in 2015 and 2017, respectively. The elliptic flow and higher-order Fourier coefficients (v₂ - v₇) are presented in a wide range of transverse momenta and collision centrality in both collision systems. The results are compared to the $v_n(p_T)$ values measured in recent $\sqrt{s_{NN}} = 5.44$ TeV Xe+Xe collisions.

ANIZIMUTHAL ANISOTROPY IN HEAVY ION COLLISIONS

Signatures of QGP:

ATLAS DETECTOR $\rightarrow v_n$ MEASUREMENT

collective expansion (radial flow, elliptic flow, ...), jet quenching, etc.

- Azimuthal anisotropy results from different
- \blacktriangleright v_2 elliptical shape of the collision zone
- \blacktriangleright Higher order v_n initial spatial fluctuations

RESULTS

▶ Non-zero v_n measured up to n=6 (ATLAS: Phys.Lett.B 707 (2012) 330-348;

Phys.Rev.C86 (2012) 014907)

► 2015: Pb+Pb 5.02 TeV, 0.49 nb⁻¹

 \triangleright Total luminosity sampled by minimum - bias triggers: 22 μb^{-1} ► 2017: Xe+Xe 5.44 TeV, 3 µb⁻¹

► Inner Dectector (Pixel + SCT) Flow measurement is based on charged tracks reconstructed in ID $arphi |\eta| < 2.5$ $\triangleright 2\pi \phi$ acceptance

 $\triangleright p_{\mathrm{T}} > 0.5 \, \mathrm{GeV}$

Forward Calorimeter $(3.1 < |\eta| < 4.9)$

▷ Event plane angles are measured using FCal $\rightarrow \Psi_n^N$ and Ψ_n^P ▷ Centrality definition

SCALAR PRODUCT (SP) METHOD

- ► Flow vectors are measured in sub-events \triangleright **ID** \rightarrow sum over charged tracks, S \triangleright FCal N and FCal P \rightarrow sum over calorimeter towers
- ► Final formula:

 $v_n\{SP\} = \frac{\langle |q_{n,j}| |Q_n^N|^P |\cos[n(\phi_j - \Psi_n^N|^P)] \rangle}{\sqrt{\langle |Q_n^N| |Q_n^P| \cos[n(\Psi_n^N - \Psi_n^P)] \rangle}}$

- Large eta gap ($|\eta| > 3.2$) to suppress short-range correlations
- **Scalar Product:** unambiguous measurement

- Flow harmonics measured for n = 2-7
- ► All centrality intervals show:
 - \triangleright Rapid rise of $v_2(p_T)$ up to $p_T \sim 3$ GeV
 - \triangleright Decrease out to 7-8 GeV
- \triangleright Weak $p_{\rm T}$ dependence above 9-10 GeV
- ► The biggest asymmetry observed in mid-central collisions (30-50%)
- \blacktriangleright v_2 is dominant and remains positive at high p_T

Centrality [%]

- \blacktriangleright v_n are comparable between the Xe+Xe [1] and Pb+Pb [2]
- \triangleright the flow related to the initial geometry rather than to the number of sources in the initial state

of $v_n \rightarrow \text{always} \langle \sqrt{v_n^2} \rangle$

Standard Event Plane method used to compare to results obtained at lower energy as well to other experiments

▷ elliptic flow is dominant asymmetry, except for the most

central bin 0-5%

▷ A difference for most central collisions indicate larger asymmetries in Xe+Xe collisions.

[1] ATLAS-CONF-2018-011, [2] ATLAS-CONF-2016-105

SUMMARY

- \blacktriangleright The azimuthal anisotropy of charged particles in Pb+Pb collisions at 5.02 TeV was studied in wide $p_{\rm T}$ (0.5 $< p_{\rm T} <$ 20 GeV) and centrality (0-80%) ranges.
- The first ATLAS measurement of flow harmonics, v_n , obtained with Xe+Xe collisions at 5.44 TeV is presented.
- \blacktriangleright Significant values of the second-order harmonic, v_2 , persist up to $p_T = 20$ GeV, in both Pb+Pb and Xe+Xe systems.
- The flow in heavy ion collisions shows stronger dependence on the initial geometry rather than on the number of sources

