Measurements of the azimuthal anisotropy of charged particles in heavy-ion collisions are sensitive to properties of the quark-gluon plasma, in particular its dependence on initial conditions, transport coefficients and time evolution. The presented measurements are based on √sNN = 5.02 TeV Pb+Pb and √sNN = 5.44 TeV Xe+Xe data collected by the ATLAS detector in 2015 and 2017, respectively. The elliptic flow and higher-order Fourier coefficients (v2 - v3) are measured for Pb+Pb and Xe+Xe collisions. The results are compared to the v4(pT) values measured in recent √sNN = 5.44 TeV Pb+Pb collisions.

ANIZMUTHAL ANISOTROPY IN HEAVY ION COLLISIONS

Signatures of QGP: collective expansion (radial flow, elliptic flow, ...), jet quenching, etc.

SCALAR PRODUCT (SP) METHOD

Flow vector

\[Q_n = \left| Q_n \right| e^{i\phi_n} = \frac{1}{S} \sum_j q_{nj} = \frac{1}{S} \sum_j w_j e^{i\phi_j} \]

Flow vectors are measured in sub-events

- ID → sum over charged tracks, S
- FCal N and FCal P → sum over calorimeter towers

Final formula:

\[v_n(SP) = \frac{\left| Q_n \right| \left| Q_n^{NP} \right| \cos(n(\phi_n - \phi_n^{NP}))}{\sqrt{\left| Q_n \right|^2 \left| Q_n^{NP} \right|^2 \cos(n(\phi_n - \phi_n^{NP}))}} \]

Large eta gap (|η| > 3.2) to suppress short-range correlations

Scalar Product: unambiguous measurement of \(v_n \) → always (\(v_n \))

Standard Event Plane method used to compare to results obtained at lower energy as well to other experiments

RESULTS

- Flow harmonics measured for \(n = 2-7 \)
- All centrality intervals show:
 - Rapid rise of \(v_2(p_T) \) up to \(p_T \sim 3 \) GeV
 - Decrease out to 7-8 GeV
 - Weak \(p_T \) - dependence above 9-10 GeV
 - The biggest asymmetry observed in mid-central collisions (30-50%)
 - Elliptic flow is dominant asymmetry, except for the most central bin 0-5%

- \(v_2 \) is dominant and remains positive at high \(p_T \)
- \(v_n \) are comparable between the Xe+Xe [1] and Pb+Pb [2]

SUMMARY

- The azimuthal anisotropy of charged particles in Pb+Pb collisions at 5.02 TeV was studied in wide \(p_T \) (0.5 < \(p_T < 20 \) GeV) and centrality (0-80%) ranges.
- The first ATLAS measurement of flow harmonics, \(v_n \), obtained with Xe+Xe collisions at 5.44 TeV is presented.
- Significant values of the second-order harmonic, \(v_2 \), persist up to \(p_T = 20 \) GeV, in both Pb+Pb and Xe+Xe systems.
- The flow in heavy ion collisions shows stronger dependence on the initial geometry rather than on the number of sources.