Energy dependence of the fluctuations of net - Λ distributions at STAR.

Nalinda Kulathunga, for the STAR Collaboration.
University of Houston

Abstract

The measurement of conserved charge distributions have generated considerable interest in understanding the cumulants of conserved quantum numbers in the QCD phase diagram, in particular the behavior near a possible critical end point and hadronization near chemical freeze-out line. Net - protons have been used as a proxy for net - baryons. In this poster, we show a first measurement of the efficiency-corrected cumulant ratios $\left(\mathrm{C}_{2} / \mathrm{C}_{1}, \mathrm{C}_{3} / \mathrm{C}_{2}\right)$ of net $-\Lambda$, which are subject to strangeness and baryon number conservation, for five beam energies ($\sqrt{ } \mathrm{s}_{\mathrm{NN}}=19.6,27,39,62.4$ and $200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions) as a function of centrality and rapidity. We compare our results to the previous STAR results, the Poisson and negative binomial expectations, as well as predictions from the UrQMD model and hadron resonance model. We deduce chemical freeze-out parameters (μ, T) and discuss the deviations of the cumulant ratios from Poisson.

1. Motivation

Several observations from lattice and thermal model calculations show different freeze-out (FO) conditions depending on the particle quark content.

3. Uncertainty estimation, efficiency correction \& baselines.

Efficiency correction is done as explained in [6] using p_{T}-integrated efficiency in each centrality bin in the range $0.9<p_{\mathrm{T}}(\mathrm{GeV} / \mathrm{c})<2.0$.

$\int \epsilon_{x}\left(p_{T}\right) f\left(p_{T}\right) p_{T} d p_{T} \quad$ where, $f\left(p_{T}\right)$ is the

 $\int f\left(p_{T}\right) p_{T} d p_{T} \quad$ corrected p_{T} spectraCentrality bin width correction (CBWC) is applied. Statistical uncertainties are calculated using delta theorem and following error propagation as explained in [7]. Systematic uncertainty estimation is done varying the selection criteria and including the effect of efficiency variation.
Baselines and models
Poisson: Moments as a function of positive $\left(\mathrm{M}^{+}\right)$and negative (M^{-}) particle distributions.
$>$ Negative binomial expectation (NBD): Moments as a function of both the mean (M) and the variance $\left(\sigma^{2}\right)$.
The ultra relativistic molecular dynamic model (UrQMD) : For transport model predictions [5].
$>$ The hadron resonance gas model (HRG) : Calculating cumulant ratios with different FO assumptions [1].

2. Method (Λ reconstruction)

Data sets:

Energy $($ Au + Au) $)$	Statistics (millions)
19.6 GeV	34
27 GeV	74
39 GeV	97
62.4 GeV	54
200 GeV	320

Λ decays into : $\wedge \rightarrow p+\pi$; Invariant mas is calculated using relativistic kinematics. Protons and pions are identified by using STAR time projection chamber (TPC). V^{0} s were reconstructed via decay topology.
Tight topological cuts were used to obtain a pure ($\sim 94 \%$) sample of V^{0} s. Centrality: Based on the multiplicity of kaons and non $-\wedge$ daughter pions

Event/track cuts:
$\mathrm{V}_{\mathrm{r}}<2 \mathrm{~cm}$ and $\left|\mathrm{V}_{\mathrm{z}}\right|<$
$\left|\mathrm{V}_{-}-\mathrm{V}_{\text {moon }}\right|<3 \mathrm{~cm}$

vo rapidity: $|y|<0.5$
Topological cuts: (* wide topological cuts in square brackets) DCA of V^{0} to $\mathrm{PV}<0.5 \mathrm{~cm}[0.95 \mathrm{~cm}]$
DCA of p to $\mathrm{PV}>0.5 \mathrm{~cm}[0.2 \mathrm{~cm}]$ DCA of p to PV $>0.5 \mathrm{~cm}[0.2 \mathrm{~cm}]$
DCA of π to $\mathrm{PV}>1.5 \mathrm{~cm}[1.0 \mathrm{~cm}]$ DCA of π to PV $>1.5 \mathrm{~cm}[1.0 \mathrm{~cm}]$
DCA of p to $\pi<0.6 \mathrm{~cm}[0.9 \mathrm{~cm}]$

4. Results - I (Centrality dependence.)

5. Results - II (Centrality dependence).

$\mathrm{C}_{2} / \mathrm{C}_{1}$ increases with increasing collision energy which is mostly driven by C_{1}. Both NBD and Poisson have an agreement with data except in the most central collisions of 200 GeV . UrQMD deviates in all cases.
>For $\mathrm{C}_{3} / \mathrm{C}_{2}$, statistical uncertainties dominate and the effect is largest in the most central collisions. NBD, Poisson and UrQMD predictions are within error bars in the most central collisions

References

Bellwied R et al. 2018 arXiv:1805.00088v1 [hep-ph] Bellwied R et al. 2013 Phys. Rev. Lett. 111, 202302. Adamczyk L et al. (STAR) 2017 arXiv:1709.00773 [nucl-ex] Adamczyk L et al. (STAR) 2014 Phys. Rev. Lett. 112032302. Bleicher M et al. 1999 J. Phys. G: Nucl. Part. Phys. 25 1859-1896. Bzdak A and Koch V 2012 arXiv:1206.4286v2 [nucl-th] Luo X 2016 J. Phys. G: Nucl. Part. Phys. 39025008.
6. Results - III (Energy dependence).
 the FO surface obtained from the net - kaon are close to the measured net $-\Lambda, C_{2} / C_{1}$ ratio.
C_{1} decreases with increasing
collision energy. C_{2} is larger and 200 GeV . C_{2} is larger at 62.4 energies.
Both NBD and Poisson expectations agree with data within the uncertainties. URQMD has the largest deviations in C_{2}.
Systematic uncertainties of C_{2} are larger at 62.4 and 200 GeV than for the other energies. Statistical and systematic uncertainties both become larger in C_{3} compared to C_{1} at 62.4 and 200 GeV .
$\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3} increase with
increasing $\left\langle\mathrm{N}_{\text {part }}\right\rangle$.
7. Results - IV
(Rapidity dependence).

Systematic uncertainties are assumed to be independent rapidity.
$>$ For C_{2} / C_{1}, systematic uncertainties are large in most central collisions.
$>\mathrm{C}_{2} / \mathrm{C}_{1}$ slightly decreases with increasing rapidity.

- For $\mathrm{C}_{2} / \mathrm{C}_{1}$, NBD expectations have larger deviations from data at peripheral collisions than at central ones
$>\mathrm{C}_{3} / \mathrm{C}_{2}$ is independent of rapidity. Statistical uncertainty dominates.

8. Summary / Conclusion.

\Rightarrow Efficiency corrected net $-\wedge C_{1}, C_{2}, C_{3}$, and $C_{1} / C_{2}, C_{3} / C_{2}$ are presented with Poisson, NBD and UrQMD expectations as a function of collision centrality, energy and rapidity with a comparison to net - proton [4] and net - kaon [3] data.
> Poisson expectations show slight deviations in most central collisions at 200 GeV . NBD expectations show better agreement with data
$>$ UrQMD expectations deviate from data mostly in C_{2}. This propagates to C_{2} / C_{1} and the deviations increase as collision energy increases. C_{1} and C_{3} agree with UrQMD.
$>$ HRG model results [1] based on the assumption that the Λ freezes-out at the same surface as the kaons are closer to the experimental values for net $-\Lambda C_{2} / C_{1}$ than the results based on the proton freeze-out surface.

