

Pion-Kaon Femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV Sadhana Dash (for the ALICE Collaboration)

Introduction

Non-identical particle femtoscopy is sensitive to both source size and emission asymmetry in heavy ion collisions.

Probes asymmetry due to radial flow and emission shift due to resonance decays.

Direct and unambiguous test for presence of collectivity

Correlation function

$C(\mathbf{k}^*) = \frac{\int \mathbf{S}(\mathbf{r}^*, \mathbf{k}^*) |\psi_{\mathbf{X}\mathbf{Y}}(\mathbf{r}^*, \mathbf{k}^*)|^2}{\int \mathbf{S}(\mathbf{r}^*, \mathbf{k}^*)} \mathbf{r}^* = \mathbf{x_1} - \mathbf{x_2}$ final state interactions **Source emission** (coulomb and strong) function Experimentally one measures

Dedicated heavy ion experiment at the LHC

Excellent tracking and momentum information Efficient particle identification at low momentum

Correlation function

Non-femtoscopic background present due to elliptic flow, global conservation of energy and momentum, residual correlations etc.

$$egin{aligned} C_{exp}^{ij} &= B^{ij} + |\psi^{ij}|^2 \ B^{ij} &= a_0^{ij} + \sum_{i=1}^5 x^{(l+1)} \ C_{real}^{ij} &= C_{exp}^{ij} - B^{ij} \ where i, j \, ext{are +,-} \ C^{ij} & ext{experimental} \end{aligned}$$

-0.01 deviates from unity in out direction while -0.02 0.05 0.1 *k** (GeV/*c*) consistent with unity in long and ALI-PREL-147246 side directions $C(\vec{\mathbf{k}^*}) = \sqrt{4\pi} \sum C_{lm}(\vec{\mathbf{k}^*}) Y_{lm}(\theta, \phi)$ $\mathbb{R}C_1^1$: significantly deviates from unity **Results (II)** ALICE Preliminary, Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV $\pi^+ K^+$ π⁻ K⁻ data $S(\mathbf{r}) = \exp(-\frac{(\mathbf{r_{out}} - \mu_{out})^2}{\mathbf{R_{out}^2}} - \frac{\mathbf{r_{side}^2}}{\mathbf{R_{side}^2}} - \frac{\mathbf{r_{long}^2}}{\mathbf{R_{side}^2}})$ 10-20 % 0.19 < p₋ < 1.5 GeV/c, lηl < 0.8 $\mathbf{R_{out}}, \mathbf{R_{side}}, \mathbf{R_{long}}$ πK^+ System size increases with event multiplicity

0.15

Conclusion

First measurement of pion-kaon femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV. Significant and finite emission asymmetry observed which increases with centrality. Strong indication of hydrodynamic evolution of the system created.

References

A.Kisiel, Acta Phys Pol B.48 (2017) A.Kisiel, Phys.Rev.C 81,064906 (2010) A.Kisiel and D.A. Brown, Phys.Rev.C 80,064911 (2009) A.Kisiel, arXiv:1804.06781 (2018)