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Finally, R(p,q)
2 is obtained in terms of rapidity and azimuthal angle di↵erences according to

R(p,q)
2 ( !�" ) =

1
⌦(�" 1)

!

↵1 ,↵2 ,�1 ,�2

R(p,q)
2 (!" (2), !#(2))$(�" 1 � " 1 + #1)$(�" 2 � " 2 + #2), (8)

where the index�" 1 corresponds to rapidity di↵erence bins,�y, in the range ymin  y < y max and the index �" 2

corresponds to an azimuthal di↵erence bins,�%, in the range 0 %< 2&, while ⌦(�" 1) is a normalization constant
that accounts for the width of the experimental acceptance in øy = 1

2 (y1 + y2) at a given �y. The sums are taken
over all rapidity and azimuthal bins and the delta functions insure that the di↵erences of rapidity (angle) bins are
properly matched to the �y (�%) bins represented by !�" . Note that the above integer arithmetics yields some bin
sharing (often termed aliasing). This bin sharing can be modeled and corrected for or suppressed by oversampling.
The bin sharing has modest e↵ects as long as the cumulant changes slowly with�y and �%.

Equations (3-5) express unbiased estimators of the densities' (p)
1 and ' (p,q)

2 in the absence of particle losses and
contamination from secondary particles or feed-downs. The strength of backgrounds associated with secondary par-
ticles may be evaluated with various track quality criteria, most particularly selection on the distance of charged
tracks closest approach to the collision primary vertex while contributions from feed-downs may require modeling of
such decays. In the context of the extension of the identity method towards measurements of di↵erential correlation
functions presented in this work, the focus is on the e↵ects of particle losses. To this end, one must Þrst describe
the calculation of the moments of the multiplicities in bins !" and !# in the presence of ßuctuations associated with
particle losses.

Proceeding similarly as in Ref. [14], one describes ßuctuations in the particle production according to an hypothetical
(true) joint probability distribution PT( !N1, !N2, . . . , !NK ), in which !N1, !N2, . . . , !NK represent vectors of the (produced)
multiplicity of particles of species p = 1 , . . . , K in momentum-space bins!" ⌘ (" 1, " 2, " 3) where " 1 = 1 , . . . , my ;
" 2 = 1 , . . . , m�; and " 3 = 1 , . . . , mp! , with my , m�, and mp! being the number of bins along each respective
coordinate. It is also convenient to deÞne vectors!np and !( p corresponding to vectors of measured multiplicities and
detection e�ciencies (deÞned later in this section). One can then write

!np = ( np(1, 1, 1), np(1, 1, 2), . . . , np(my , m�, mp! )) , (9)
!Np = ( Np(1, 1, 1), Np(1, 1, 2), . . . , Np(my , m�, mp! )) , (10)

!( p = ( ( p(1, 1, 1), ( p(1, 1, 2), . . . , ( p(my , m�, mp! )) . (11)

Moments of the multiplicities Np(!" ) are calculated according to

hNp(!" )i =
!

~N

Np(!" )PT( !N1, !N2, . , !NK ), (12)

hNp(!" ) [Np(!" ) � 1]i =
!

~N

Np(!" ) [Np(!" ) � 1]PT( !N1, !N2, . , !NK ), (13)

"
Np(!" )Nq( !#)

#
=

!

~N

Np(!" )Nq( !#)PT( !N1, !N2, . , !NK ), (14)

where the shorthand notation
$

~N is deÞned according to

!

~N

=
1!

N 1 (1,1,1)=0

· · ·
1!

N 1 (m y ,m �,m p! )=0

1!

N 2 (1,1,1)=0

· · ·
1!

N 2 (m y ,m �,m p! )=0

· · ·
1!

N K(1,1,1)=0

· · ·
1!

N K(m y ,m �,m p! )=0

(15)

Experimentally, measurements of particle production are subjected to random losses of particles. Assuming the
detection of the N particles amounts to N independent processes, i.e., provided that the probability of detecting the
N particles jointly is equal to the product of the probabilities of detecting each of the particles independently, one
models the particle detection process in bin!" according to a binomial distribution B (np(!" )|Np(!" ), ( p(!" )) deÞned
according to

B (n|N, ( ) =
N !

n!(N � n)!
( n (1 � ( )N �n , (16)

where( p(!" ) represents the detection e�ciency of particle speciesp in phase-space bin!" , while np(!" ) and Np(!" ) are the
measured and true particle multiplicities in that bin. In general, detection e�ciencies di↵er for speciesp = 1 , . . . , K
and may also feature dependences ony, %, and p?, represented here as discretized functions( p(!" ).
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joint probability that a particle be detected in the TPC at a momentum ~↵. P (m|d, ~↵) is obtained by summing the
probability densities of PID signal m associated with all species

P (m|d, ~↵)P (d, ~↵) =
K!

k=1

P (m|d, k, ~↵)P (d|k, ~↵)P (k, ~↵), (39)

=
K!

k=1

P (m|d, k, ~↵)"k (~↵)P (k, ~↵) (40)

and

P (d, ~↵) =
K!

k=1

P (d|k, ~↵)P (k, ~↵) =
K!

k=1

"k (~↵)P (k, ~↵). (41)

The overall line shapeP (m|d, ~↵) = ⇢(m)/ !N " is given by

P (m|d, ~↵) =
" K

k=1 P (m|d, k, ~↵)"k (~↵)P (k, ~↵)
" K

k=1 "k (~↵)P (k, ~↵)
(42)

The conditional probability P (k|m, d, ~↵) can then be expressed

P (k|m, d, ~↵) =
P (m|d, k, ~↵)"k (~↵)P (k, ~↵)

" K
k ! =1 P (m|d, k0, ~↵)"k ! (~↵)P (k0, ~↵)

(43)

One Þnally obtains the line shape⇢k (m|~↵) for particles of type k in the momentum bin ~↵:

⇢k (m|~↵) = P (m|d, k, ~↵)"k (~↵)P (k, ~↵). (44)

Indeed, Eq. (43) is equivalent to Eq. (34), and!k (m) corresponds to the probability of speciesk given a PID signal
of amplitude m at a speciÞc momentum~↵, which one thus denotes

!k (m|~↵) =
P (m|d, k, ~↵)"k (~↵)P (k, ~↵)

" K
k ! =1 P (m|d, k0, ~↵)"k ! (~↵)P (k0, ~↵)

(45)

The weights!k (m|~↵) provide the correct probability of a particle being of speciesk given m only if they are evaluated
as a function of the momentum vector~↵. Indeed, the relative probability of speciesk = 1 , . . . ,K may be a function of
rapidity ( y), azimuth (�), and transverse momentum (p?). In practice, it may be unnecessary to use the same level of
granularity for the determination of the weights !k (m|~↵) and the study of the particle densities. This is particularly
important in the context of experiments where e! ciencies may depend on the collision centrality (or the multiplicity
produced), the collision vertex position, or any other external or global event variable.

Following the original identity method, one deÞnes an event-by-event variableWp, hereafter called event-wise
identity variable for species p = 1 , . . . ,K, as the sum of the weights!p(mi |~↵), i = 1 , . . . ,M , calculated for all M
particles of an event satisfying kinematic and quality criteria used in the analysis:

Wp(~↵) #
M!

i=1

!p(mi |~↵). (46)

The identity method involves calculation of the moments ofWp(~↵) and one shall verify these are linear combinations
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for K > 2 species, i.e., forp, q = 1 , . . . , K > 2, and the determination of higher moments, and further extended in
Ref. [14] to explicitly account for p! dependent detection e! ciencies. In this and the next section, one shows that
the e! ciency dependent identity method [14] can be readily extended to di" erential correlation functions, such asR2,
provided one discretizes single and pair densities according to Eqs. (3-5). The method presented in this section relies
on a single PID variable, e.g., energy loss in a time projection chamber. It is extended to measurements involving
two or more PID signals in the following section.

Within the identity method, rather than attempting to unambiguously identify the species of measured particles
event-by-event, one relies on a probabilistic evaluation of the moments!nk " and !nk (nk # 1)". SpeciÞcally, instead of
summing integer counts (1 for an identiÞed particle, 0 otherwise), one accounts for ambiguities by summing weights
! k (m) for each PID hypothesis. The weights are determined particle-by-particle, and for each hypothesisk = 1 , . . . , K ,
according to the relative frequency of particles of typek for a PID signal (the ÒmassÓ signal) of amplitudem deÞned
by

! k (m) $
" k (m)
" (m)

, (34)

with

" (m) $
K!

k=1

" k (m);
"

" k (m)dm = !Nk " , (35)

where " k (m) represents the probability density of the PID signal m for particles of type k and " (m) is the ensemble
averaged PID signal density.

The goal of this work is to formulate di" erential correlations as functions of particle pair separation in rapidity and
azimuth using the identity method. It is important to Þrst establish that the experimentally measured signal line
shape can be meaningfully used to determine the relative probability of particle species on an event-by-event basis.
As an example, one considers the energy loss signaldE/dx produced by charged particles in a TPC. The momentum
space is discretized inmy rapidity bins, m! azimuthal angle bins, andmp! transverse momentum bins. The detector
response is thus expressed in terms of the discretized momentum vectors,#$ and #%deÞned in the previous section.

Let P(k, #$) represent the probability of a particle of type k = 1 , . . . , K being produced in momentum bin #$.
Further deÞneP(d|k, #$) $ &k (#$) as the conditional probability of the predicate d stating that a particle of type k and
momentum #$ is detected in the TPC, and P(m|d, k, #$), the conditional probability density that this particle, being
detected, produces a PID signal of amplitudem. The joint probability of having a particle of type k being detected
in the TPC and producing a signal of amplitude m is thus

P(m, d, k, #$) = P(m|d, k, #$)P(d|k, #$)P(k, #$), (36)

= P(m|d, k, #$)&k (#$)P(k, #$).

Let us useP(m, d, k, #$) to calculate the probability that a signal of amplitude m corresponds to a particle of typek.
One writes

P(m, d, k, #$) = P(k|m, d, #$)P(m|d, #$)P(d, #$), (37)

where P(k|m, d, #$) represents the conditional probability that a track detected in the TPC with a PID signal of
amplitude m and momentum-space coordinate bin#$ corresponds to a particle of typek; P(m|d, #$) represents the
conditional probability density that a PID signal of amplitude m be produced when a particle within the momentum-
space bin#$ is detected in the TPC and P(d, #$) represents the joint probability a particle of momentum #$ be observed
in the TPC. Using Eqs. (36,37), one writes (BayesÕ theorem)

P(k|m, d, #$) =
P(m|d, k, #$)&k (#$)P(k, #$)

P(m|d, #$)P(d, #$)
. (38)

The quantity &k (#$) represents the detection e! ciency of particles of typek at momentum #$ and can be determined
by Monte Carlo simulations of the detector performance or by embedding techniques.P(m|d, k, #$) represents the
line shape of the PID signalm associated with a detected particle of typek (it corresponds to ! k (m) in Eq. 34),
whereasP(k, #$) = P(k|#$)P(#$) corresponds to the joint probability, determined statistically from the event ensemble
average, that a produced particle of momentum#$ and type k are detected. The quantity P(m|d, #$) represents the
probability that a PID signal m is observed when a particle at momentum$ is detected, whileP(d, #$) represents the

H%&,131/'4#+3#?"&';:+'
5<&=3&5'f<g'a

S&5<:,5&';$,=13:,5a
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joint probability that a particle be detected in the TPC at a momentum !" . P(m|d, !" ) is obtained by summing the
probability densities of PID signal m associated with all species

P(m|d, !" )P(d, !" ) =
KX

k=1

P(m|d, k, !" )P(d|k, !" )P(k, !" ), (39)

=
KX

k=1

P(m|d, k, !" )#k(!" )P(k, !" ) (40)

and

P(d, !" ) =
KX

k=1

P(d|k, !" )P(k, !" ) =
KX

k=1

#k(!" )P(k, !" ). (41)

The overall line shapeP(m|d, !" ) = $(m)/ !N " is given by

P(m|d, !" ) =
PK

k=1 P(m|d, k, !" )#k(!" )P(k, !" )
PK

k=1 #k(!" )P(k, !" )
(42)

The conditional probability P(k|m, d, !" ) can then be expressed

P(k|m, d, !" ) =
P(m|d, k, !" )#k(!" )P(k, !" )

PK
k0=1 P(m|d, k0, !" )#k0 (!" )P(k0, !" )

(43)

One Þnally obtains the line shape$k(m|!" ) for particles of type k in the momentum bin !" :

$k(m|!" ) = P(m|d, k, !" )#k(!" )P(k, !" ). (44)

Indeed, Eq. (43) is equivalent to Eq. (34), and%k(m) corresponds to the probability of speciesk given a PID signal
of amplitude m at a speciÞc momentum!" , which one thus denotes

%k(m|!" ) =
P(m|d, k, !" )#k(!" )P(k, !" )

PK
k0=1 P(m|d, k0, !" )#k0 (!" )P(k0, !" )

(45)

The weights %k(m|!" ) provide the correct probability of a particle being of speciesk given m only if they are evaluated
as a function of the momentum vector!" . Indeed, the relative probability of speciesk = 1 , . . . , K may be a function of
rapidity ( y), azimuth ( &), and transverse momentum (p?). In practice, it may be unnecessary to use the same level of
granularity for the determination of the weights %k(m|!" ) and the study of the particle densities. This is particularly
important in the context of experiments where e�ciencies may depend on the collision centrality (or the multiplicity
produced), the collision vertex position, or any other external or global event variable.

Following the original identity method, one deÞnes an event-by-event variableWp, hereafter called event-wise
identity variable for species p = 1 , . . . , K , as the sum of the weights%p(mi|!" ), i = 1 , . . . , M , calculated for all M
particles of an event satisfying kinematic and quality criteria used in the analysis:

Wp(!" ) #
MX

i=1

%p(mi|!" ). (46)

The identity method involves calculation of the moments of Wp(!" ) and one shall verify these are linear combinations
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of the moments hNp(!" )i. For measurements ofR(p,q)
2 , one only needs to consider the two lowest orders

hWp(!" )i =
1

Nevents

N events!

i =1

W (i )
p (!" ), (47)

"
Wp(!" )2#

=
1

Nevents

N events!

i =1

W (i )
p (!" )2, (48)

$
Wp(!" )Wp( !#)

%
=

1
Nevents

N events!

i =1

W (i )
p (!" )W (i )

p ( !#), (49)

hWp(!" )Wq(!" )i =
1

Nevents

N events!

i =1

W (i )
p (!" )W (i )

q (!" ), (50)

$
Wp(!" )Wq( !#)

%
=

1
Nevents

N events!

i =1

W (i )
p (!" )W (i )

q ( !#). (51)

in which W (i )
p (!" ), W (i )

q (!" ) and W (i )
q ( !#) are event-wise identity variables for speciesp 6= q, in events i = 1 , . . . , Nevents ,

measured in kinematic bins!" 6= !#.
Theoretically, calculations of the expectation values of the momentshWp(!" )i and

$
Wp(!" )Wq( !#)

%
, with particle

losses, proceed similarly as in Ref. [14] but one must properly average over all species, all bins!" , and all particles in
those bins. The resulting mathematical expressions are rather large and cumbersome. It is thus convenient to develop
some additional shorthand notations. Given one must account for binomial sampling in each bin!" , for each species
p, let us introduce

B(!np, !Np, !$ p) =
m y&

! 1 =1

m !&

! 2 =1

m p !&

! 3 =1

B (np(!" )|Np(!" ), $p(!" )) , (52)

where !np, !Np, !$ p represent vectors of values in all bins!" = ( " 1, " 2, " 3) introduced in Eq. (9).
One must also average over all possible values of PID signals, for all species, in all bins!" . To that end, one deÞnes

functionals

Pp(np(!" )) =
n p ( "! )&

i =1

'
P(mi |d, p, !" )dmi , (53)

wherenp(!" ) is the number of particles of speciesp detected in bin !" ; mi is the amplitude of the PID signal of the i -th
particle of type p in that bin; and P(mi |d, p, !" ) is the probability density of such signals. In order to average over all
bins !" , one introduces the functionals

Sp(!np) =
m y&

! 1 =1

m !&

! 2 =1

m p !&

! 3 =1

Pp(np(!" )) (54)

The integrals within the functionals Pp(np(!" )) and Sp(!np) are to be evaluated when multiplied to the right by Wp.
The expectation value ofWp(!" ) may then be written

hWp(!" )i =
!

"N

!

"n

PT ( !N )
K&

k=1

B(!nk , !Nk , !$ k )Sp(!np)
K!

k " =1

n k " ( "! )!

i k " =1

%p(m(k " )
i k "

|!" )) (55)

This expression involves product of several integrals whose evaluation seems daunting. However, note that most of
the integrals are of the form

(
P(m)dm = 1 and thus do not contribute to hWp(!" )i. Only integrals of the form(

%p(m)P(m|d, q,!" )dm yield non-unitary values and must thus be accounted for. It is thus convenient to introduce
(similarly as in Ref. [14]), coe�cients

upq(!" ) =
'

%p(m|!" )P(m|d, q,!" )dm, (56)
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Equation (55) may then be written

!Wp(!" )" =
!

!N

!

!n

PT ( !N )
K"

k=1

Bk (!np, !Np, !# p)
K!

k ! =1

upk ! (!" )nk ! (!" ). (57)

Sequential evaluation of the sums
#

!n and
#

!N yields

!Wp(!" )" =
!

!N

PT ( !N )
K!

k=1

upk (!" )Nk (!" )#k (!" ) (58)

=
K!

k=1

upk (!" ) !Nk (!" )" #k (!" ).

As in Ref. [14], it is convenient to absorb the e�ciencies in the moments and write

!Wp(!" )" =
K!

k=1

upk (!" ) !nk (!" )" , (59)

where, by deÞnition,!nk (!" )" = !Nk (!" )" #k (!" ). For a given bin !" , the above equation expresses the averages!Wp(!" )" as
a linear combination of the average multiplicities !nk (!" )" determined by the coe�cients upk (!" ). One then introduces
vectors

!W(1) (!" ) # (!W1(!" )" , !W2(!" )" , . . . , !WK (!" )") , (60)
!N(1) (!" ) # (!n1(!" )" , !n2(!" )" , . . . , !nK (!" )") , (61)

and a matrix

U(!" ) =

$

%
&

u11(!" ) á á áu1K (!" )
...

. . .
...

uK 1(!" ) á á áuKK (!" )

'

(
) . (62)

The average multiplicities !N(1) (!" ) are thus obtained by inversion ofU(!" ):

!N(1) (!" ) = ( U(!" )) ! 1 !W(1) (!" ), (63)

and average multiplicities corrected for e�ciency losses,!Np(!" )", are then calculated according to

!Np(!" )" =
!np(!" )"
#p(!" )

. (64)

Note that there are my $ m" $ mp" independent matrix inversions to carry out, i.e., one for each momentum bin!" .
If momentum smearing was an important e↵ect, one would have to invoke smearing response functions and all these
matrix inversions would be coupled.

Evaluation of the second order moments proceeds similarly. However, one must consider the four cases corresponding
to Eqs. (48)-(51), i.e.,

*
Wp(!" )2

+
,

,
Wp(!" )Wp( !$)

-
, !Wp(!" )Wq(!" )", and

,
Wp(!" )Wq( !$)

-
, in which, by convention,

p %= q, !" %= !$. Toward that end, it is convenient to deÞne

u(2)
pk (!" ) =

.
%p(m|!" )2P(m|d, k, !" )dm, (65)

upqk (!" ) =
.

%p(m|!" )%q(m|!" )P(m|d, k, !" )dm, (66)
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