Extension of the Identity Method to Measurements of Differential Correlation Functions

Introduction/Summary

Integral/differential correlation functions (CF) of particles produced in A-A collisions provide invaluable information on the particle production dynamics, the system evolution, and the determination of fundamental properties of the quark matter produced. CFs measured for specific species (e.g., $\pi, \mathrm{K}, \mathrm{p}$, etc.) are of particular interest as they probe processes determined by conservation laws. Measurements based on traditional particle identification (PID) methods require large datasets given severe particle rejection may be experimentally incurred to achieve high species purity and low contamination. The identity method (IM) [1] provides a technique to essentially recover the full statistics, extend the kinematic range of measurements while providing reliable disambiguation of particle species [2-4]. The method is here extended towards measurements of differential correlation functions, e.g., normalized cumulants R_{2}, and is developed for an arbitrary number of particle species, p_{T} dependent particle losses, as well as an arbitrary number of particle identification signals.

References

1] M. Gazdzicki, EPJ C8 (1999) 131, 2] A. Rustamov, et al. PRC 86 (2012) 044906 3] M. I. Gorenstein, PRC 84 (2011) 024902, [4] C. Pruneau, PRC 96 (2017) 054902 * In collaboration w/ A. Ohlson, Heidelberg U.

Definitions:

Accounting for detection efficiencies:

Identity Method - Variable Definitions

Probability signal "m" corresponds to species k :

$$
\omega_{k}(m \mid \vec{\alpha})=\frac{P(m \mid d, k, \vec{\alpha}) \varepsilon_{k}(\vec{\alpha}) P(k, \vec{\alpha})}{\sum_{k^{\prime}=1}^{K} P\left(m \mid d, k^{\prime}, \vec{\alpha}\right) \varepsilon_{k^{\prime}}(\vec{\alpha}) P\left(k^{\prime}, \vec{\alpha}\right)}
$$

Probability of species k given PID signal " m ":
$P(k \mid m, d, \vec{\alpha})=\frac{P(m \mid d, k, \vec{\alpha}) \varepsilon_{k}(\vec{\alpha}) P(k, \vec{\alpha})}{P(m \mid d, \vec{\alpha}) P(d, \vec{\alpha})}$.
$u_{p q}(\vec{\alpha})=\int \omega_{p}(m \mid \vec{\alpha}) P(m \mid d, q, \vec{\alpha}) d m$,
$u_{p k}^{(2)}(\vec{\alpha})=\int \omega_{p}(m \mid \vec{\alpha})^{2} P(m \mid d, k, \vec{\alpha}) d m$,
$u_{p q k}(\vec{\alpha})=\int \omega_{p}(m \mid \vec{\alpha}) \omega_{q}(m \mid \vec{\alpha}) P(m \mid d, k, \vec{\alpha}) d m$,
Identity variable for
species " p " :
$W_{p}(\vec{\alpha}) \equiv \sum_{i=1}^{M} \omega_{p}\left(m_{i} \mid \vec{\alpha}\right)$.

First Moments:
$\left\langle W_{p}\left(\vec{\alpha}^{(2)}\right)\right\rangle=\sum_{k=1}^{K} u_{p k}(\vec{\alpha})\left\langle N_{k}(\vec{\alpha})\right\rangle \varepsilon_{p}(\vec{\alpha})$
Second \& Cross-Moments: $\left\langle\left(W_{p}(\vec{\alpha})\right)^{2}\right\rangle=\sum_{k, k^{\prime}=1}^{K} u_{p k}^{(2)}(\vec{\alpha})\left\langle N_{k}(\vec{\alpha})\right\rangle \varepsilon_{p}(\vec{\alpha})+\sum_{k, k^{\prime}=1}^{K} u_{p k}(\vec{\alpha}) u_{p k^{\prime}}(\vec{\alpha})\left\langle N_{k}(\vec{\alpha})\left(N_{k^{\prime}}(\vec{\alpha})-\delta_{k k^{\prime}}\right)\right\rangle\left(\varepsilon_{p}(\vec{\alpha})\right)^{2}$
$\left\langle W_{p}(\vec{\alpha}) W_{q}(\vec{\beta})\right\rangle=\delta_{\vec{\alpha} \vec{\beta}} \sum_{k, k^{\prime}=1}^{K} u_{p q k}(\vec{\alpha})\left\langle N_{k}(\vec{\alpha})\right\rangle \varepsilon_{p}(\vec{\alpha})+\sum_{k, k=1}^{K} u_{p k}(\vec{\alpha}) u_{q k^{k}}(\vec{\beta})\left\langle N_{k}(\vec{\alpha})\left(N_{k^{\prime}}(\vec{\beta})-\delta_{k k^{\prime}} \delta_{\vec{\alpha} \vec{\beta}}\right)\right\rangle \varepsilon_{p}(\vec{\alpha}) \varepsilon_{q}(\vec{\beta})$

Identity Method - Matrix formulation \& Solution

$V_{p q}(\vec{\alpha}, \vec{\beta})=\left\langle W_{p}(\vec{\alpha}) W_{q}(\vec{\beta})\right\rangle-\delta_{\vec{\alpha} \vec{\beta}} \delta_{p q} \sum_{k=1}^{K} u_{p k}^{(2)}(\vec{\alpha})\left\langle N_{k}(\vec{\alpha})\right\rangle \varepsilon_{k}(\vec{\alpha})-\delta_{\vec{\alpha} \vec{\beta}} \sum_{k=1}^{K} u_{p q k}(\vec{\alpha})\left\langle N_{k}(\vec{\alpha})\right\rangle \varepsilon_{k}(\vec{\alpha})$
$\mathbb{V}_{p q}(\vec{\alpha}, \vec{\beta})=\left[\begin{array}{cccc}V_{11}(\vec{\alpha}, \vec{\beta}) & V_{12}(\vec{\alpha}, \vec{\beta}) & \cdots & V_{1 K}(\vec{\alpha}, \vec{\beta}) \\ V_{21}(\vec{\alpha}, \vec{\beta}) & V_{22}(\vec{\alpha}, \vec{\beta}) & \cdots & V_{1 K}(\vec{\alpha}, \vec{\beta}) \\ \cdots & \cdots & \ddots & \vdots \\ V_{K 1}(\vec{\alpha}, \vec{\beta}) & \cdots & \cdots & V_{K K}(\vec{\alpha}, \vec{\beta})\end{array}\right] \quad \mathbb{N}^{(2)}(\vec{\alpha}, \vec{\beta})=\left[\begin{array}{ccccc}\left.\left\langle N_{1}(\vec{\alpha})\left(N_{1}(\vec{\beta})\right)-\delta_{\alpha \vec{p}}\right)\right\rangle & \left\langle N_{1}(\vec{\alpha}) N_{2}(\vec{\beta})\right\rangle & \cdots & \left\langle N_{1}(\vec{\alpha}) N_{K}(\vec{\beta})\right\rangle \\ \left\langle N_{2}(\vec{\alpha}) N_{1}(\vec{\beta})\right\rangle & \left.\left\langle N_{2}(\vec{\alpha})\left(N_{2}(\vec{\beta})\right)-\delta_{a \vec{\beta}}\right)\right\rangle & \cdots & \left\langle N_{2}(\vec{\alpha}) N_{K}(\vec{\beta})\right\rangle \\ \cdots & \cdots & \ddots & \vdots \\ \left\langle N_{K}(\vec{\alpha}) N_{1}(\vec{\beta})\right\rangle & \cdots & \cdots & \left.\left\langle N_{K}(\vec{\alpha})\left(N_{K}(\vec{\beta})\right)-\delta_{\alpha \vec{\beta}}\right)\right\rangle\end{array}\right]$
$\left.\mathbb{N}^{(2)}(\vec{\alpha}, \vec{\beta})=U(\vec{\alpha})^{-1} \mathbb{V}(\vec{\alpha}, \vec{\beta})\left(U(\vec{\beta})^{T}\right)^{-1} \square\left\langle N_{p}(\vec{\alpha})\left(N_{q}(\vec{\beta})\right)-\delta_{p q} \delta_{\vec{\alpha} \vec{\beta}}\right)\right\rangle=\frac{\left.\left\langle n_{p}(\vec{\alpha})\left(n_{q}(\vec{\beta})\right)-\delta_{p q} \delta_{\vec{\alpha} \vec{\beta}}\right)\right\rangle}{\varepsilon_{p}(\vec{\alpha}) \varepsilon_{q}(\vec{\beta})} R_{2}^{p, q}\left(\vec{\alpha}^{(2)}, \vec{\beta}^{(2)}\right)=\frac{\left.\left\langle N_{p}\left(\vec{\alpha}^{(2)}\right)\left(N_{q}\left(\vec{\beta}^{(2)}\right)\right)-\delta_{p q} \delta_{\vec{\alpha} \vec{\beta}}\right)\right\rangle}{N_{p}\left(\vec{\alpha}^{(2)}\right) N_{q}\left(\vec{\beta}^{(2)}\right)}-1$

Summary:

The formalism presented enables measurements of differential correlation functions for pairs of species, e.g., $\pi \pi, \pi K, \pi p, K K, K p, p p, t h a t$ essentially recover the full statistics, extend the kinematic range of measurements while providing reliable disambiguation of particle species [2-3]. The method was developed towards measurements of differential correlation functions, e.g., R_{2}, for an arbitrary number of particle species, pT dependent particle losses, as well as an arbitrary number of particle identification signals (not discussed here) but can be extended to other correlation observables.

