Extension of the Identity Method to Measurements of Differential Correlation Functions

👽 Claude A. Pruneau, Wayne State University*

Introduction/Summary

Integral/differential correlation functions (CF) of particles produced in A-A collisions provide invaluable information on the particle production dynamics, the system evolution, and the determination of fundamental properties of the quark matter produced. CFs measured for specific species (e.g., π , K, p, etc.) are of particular interest as they probe processes determined by conservation laws. Measurements based on traditional particle identification (PID) methods require large datasets given severe particle rejection may be experimentally incurred to achieve high species purity and low contamination. The identity method (IM) [1] provides a technique to essentially recover the full statistics, extend the kinematic range of measurements while providing reliable disambiguation of particle species [2-4]. The method is here extended towards measurements of differential correlation functions, e.g., normalized cumulants R_{22} , and is developed for an arbitrary number of particle species, p_T dependent particle losses, as well as an arbitrary number of particle species.

References

M. Gazdzicki, EPJ C8 (1999) 131,
 A. Rustamov, et al. PRC 86 (2012) 044906,
 M. I. Gorenstein, PRC 84 (2011) 024902,
 C. Pruneau, PRC 96 (2017) 054902.
 In collaboration w/ A. Ohlson, Heidelberg U.

Definitions:

Discretize particle momenta: $(y, $	$(\phi, p_T) \rightarrow \vec{\alpha} = (\alpha_1, \alpha_2, \alpha_3)$	Dimensions: $n_{\eta} \ge n_{\phi}$	x n _{pT} Projections: ($(y,\phi) \rightarrow \vec{\alpha}^{(2)} = (\alpha_1,\alpha_2)$	$(\Delta y, \Delta \phi) \rightarrow \Delta \vec{\alpha}^{(2)} = (\Delta \alpha_1, \Delta \alpha_2)$
Discretized single particle density (Sp	ecies p): $\rho_1^p(\vec{\alpha}) \rightarrow \langle N_p(\vec{\alpha}) \rangle$	(i) Discretized partic	cle pair density (Species p,c	$0: \rho_2^{p,q}(\vec{\alpha},\vec{\beta}) \rightarrow \langle N \rangle$	$\left\langle N_{p}(\vec{\alpha})\left(N_{q}(\vec{\beta})-\delta_{pq}\delta_{\vec{\alpha}\vec{\beta}}\right)\right\rangle$
Integration over pT: $\rho_1^p(\vec{\alpha}^{(2)}) \rightarrow \langle N_p(\vec{\alpha}^{(2)}) \rangle$	$\vec{x}^{(2)} \rangle = \sum_{\alpha_3=1}^{m_p} N_p(\alpha_1, \alpha_2, \alpha_3) \\ / N_p(\alpha_1, \alpha_2, \alpha_3) $	$\rho_2^{p,q}(\bar{\alpha}^{(2)},\bar{\beta}^{(2)}) \rightarrow \langle N_p(\bar{\alpha}^{(2)}) \rangle$	$\left(N_{q}(\vec{\beta}^{(2)})-\delta_{pq}\delta_{\vec{\alpha}\vec{\beta}}\right)\right)=\sum_{\alpha_{3},\beta_{3}-1}^{m_{p}}\left\langle N_{p}\right\rangle$	$(\vec{\alpha}) \left(N_q(\vec{\beta}) - \delta_{pq} \delta_{\vec{\alpha}\vec{\beta}} \right) $	
Normalized cumulant (4D): $R_2^{p,q}(ec{lpha})$	$\vec{\beta}^{(2)}) = \frac{\langle N_p(\vec{\alpha}^{(2)}) N_q(\vec{\beta}^{(2)}) - \delta_p \rangle}{\langle N_p(\vec{\alpha}^{(2)}) \rangle \langle N_q(\vec{\beta}^{(2)}) \rangle}$	$\left. \left. \left$	veraged cumulant: $R_2^{p,q}(\Delta \vec{lpha}^{(2)})$	$=\frac{1}{\Omega(\Delta\alpha_1)}\sum_{\alpha_1,\alpha_2,\beta_1,\beta_2=1}R_2^{p,q}(\vec{\alpha})$	$^{(2)},\vec{\beta}^{(2)})\delta(\Delta\alpha_1-\alpha_1+\beta_1)\delta(\Delta\alpha_2-\alpha_2+\beta_2)$
Accounting for detectio	n efficiencies:				
True joint probability $P_T(\vec{N}_1, \vec{N}_2,, l)$ distribution of K species:	$\vec{V}_{_K}$) Measured distribution K species:	of $P_{M}(\vec{n}_{1},\vec{n}_{2},,\vec{n}_{K}) = \sum_{N} P_{T}(\vec{N}_{1},\vec{N}_{2},,\vec{N}_{K}) \prod_{\vec{n}_{1}}$	$\left[B\left(n_1(\tilde{\alpha}_1) N_1(\tilde{\alpha}_1),\epsilon_1(\tilde{\alpha}_1)\right)\times\prod_{\tilde{\alpha}_1}B\left(n_2(\tilde{\alpha}_2) N_2(\tilde{\alpha}_2),\epsilon_2(\tilde{\alpha}$	$(\tilde{\alpha}_2) \times \cdots \times \prod_{\tilde{\alpha}_{\xi}} B(n_{\chi}(\tilde{\alpha}_{\chi}) N_{\chi}(\tilde{\alpha}_{\chi}), \varepsilon_{\chi}(\tilde{\alpha}_{\chi}))$	Binomial losses $B(n N,\varepsilon) = \frac{N!}{n!(N-n)!}\varepsilon^n (1-\varepsilon)^{N-n}$
Expectation values:					
True expectation values:	$) = \sum_{N} N_{p}(\vec{\alpha}^{(2)}) P_{T}(\vec{N}_{1},,\vec{N}_{K}) $ $) (N_{q}(\vec{\beta}^{(2)}) - \delta_{pq} \delta_{\bar{q}\bar{p}}) = \sum_{N} N_{p}(\vec{\alpha}^{(2)}) P_{M}(\vec{n}_{1},,\vec{n}_{K}) $ $) = \sum_{N} n_{p}(\vec{\alpha}^{(2)}) P_{M}(\vec{n}_{1},,\vec{n}_{K}) $ $) = \sum_{N} n_{p}(\vec{\alpha}^{(2)}) P_{N}(\vec{n}_{1},,\vec{n}_{K}) $ $) = \sum_{N} n_{p}(\vec{\alpha}^{(2)}) P_{N}(\vec{n}_{1},,\vec{n}_{K}) $	$\int \left(N_q(\vec{\beta}^{(2)}) - \delta_{pq} \delta_{\bar{q}\bar{\beta}} \right) P_T(\vec{N}_1, \dots)$	(N_{μ}, N_{μ})	asured multiplicities corr $(\vec{\alpha}^{(2)}) = \sum_{\alpha_{3}=1}^{m_{p}} \frac{\langle n_{p}(\vec{\alpha}) \rangle}{\varepsilon_{p}(\vec{\alpha})}$ $(\vec{\alpha}^{(2)}) \langle N_{a}(\vec{\beta}^{(2)}) - \delta_{aa}\delta_{a\bar{a}} \rangle$	ected for efficiencies: $\sum_{j=1}^{m_{p}} \frac{\left\langle n_{p}(\vec{\alpha}^{(2)}) \left(n_{q}(\vec{\beta}^{(2)}) - \delta_{pq} \delta_{\vec{\alpha}\vec{\beta}} \right) \right\rangle}{\left\langle \vec{\alpha}^{(2)} \right\rangle}$
$\langle n_p(\alpha) \rangle$	$\left \left(n_{q}\left(\beta^{(s)}\right)-\delta_{pq}\delta_{\bar{a}\bar{\beta}}\right)\right\rangle=\sum_{\bar{N}}n_{p}\left(\alpha^{(s)}\right)$	$\left(n_{q}(\beta^{(s)}) - o_{pq}o_{\bar{a}\bar{\beta}}\right)P_{M}(n_{1},\dots,n_{q})$	<i>n_K</i> J	(1 144)/	$\alpha_{3}=1$ $\varepsilon_{p}(\alpha)\varepsilon_{p}(\beta)$
Identity Method – Varia	ble Definitions	D(x)	$r d h \vec{z} = (\vec{z}) P(h \vec{z})$		
and 31200 and 21200 and 212000 and 212000 and 212000 and 21200 and 21200 and 2120	Probability signal "m" corresponds to species k:	$\omega_k(m \vec{\alpha}) = \frac{P(n)}{\sum_{k'=1}^K F(n)}$	$P(m d, k', \vec{\alpha})\varepsilon_{k'}(\vec{\alpha})P(k, \alpha)$ $P(m d, k', \vec{\alpha})\varepsilon_{k'}(\vec{\alpha})P(k')$	$\overline{(\vec{r},\vec{lpha})}$ Response funct $u_{pq}(\vec{lpha}) =$	tions: $\int \omega_p(m ec{lpha}) P(m d,q,ec{lpha}) dm,$
	Probability of species k given PID signal "m":	$P(k m, d, \vec{\alpha}) = \frac{P(m)}{m}$	$\frac{n d,k,\vec{\alpha})\varepsilon_k(\vec{\alpha})P(k,\vec{\alpha})}{P(m d,\vec{\alpha})P(d,\vec{\alpha})}$	$\frac{1}{2} \cdot u_{pk}^{(2)}(\vec{\alpha}) = \int u_{pk}(\vec{\alpha}) = \int u_{pk}(\vec{\alpha}) = \int u_{pk}(\vec{\alpha}) = \int u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) + \int u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) + \int u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) + \int u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) \cdot u_{pk}(\vec{\alpha}) + \int u_{pk}(\vec{\alpha}) \cdot $	$\omega_p(m \vec{\alpha})^2 P(m d,k,\vec{\alpha}) dm,$ $(m \vec{\alpha}) \psi_1(m \vec{\alpha}) P(m d,k,\vec{\alpha}) dm$
	Identity variable for species "p" :	$W_p(\vec{\alpha}) \equiv \sum_{i=1}^{m} \omega_p(m_i)$	<i>α</i>).	$u_{pq\kappa}(\alpha)$ J	
	First Moments:	$\left\langle W_{p}(\vec{\alpha}^{(2)})\right\rangle = \sum_{k=1}^{n} u_{pk}(\vec{\alpha}) \left\langle N_{k}(\vec{\alpha})\right\rangle$	$\rangle \varepsilon_{p}(\vec{\alpha})$		
	Second & Cross-Moments:	$\left\langle \left(W_{p}(\vec{\alpha})\right)^{2}\right\rangle = \sum_{k,k=1}^{K} u_{pk}^{(2)}(\vec{\alpha}) \left\langle N_{k}(\vec{\alpha})\right\rangle \varepsilon_{p}(\vec{\alpha}) + \sum_{k,k=1}^{K} u_{pk}(\vec{\alpha}) u_{pk'}(\vec{\alpha}) \left\langle N_{k}(\vec{\alpha}) \left(N_{k'}(\vec{\alpha}) - \delta_{kk'}\right)\right\rangle \left(\varepsilon_{p}(\vec{\alpha})\right)^{2}$			
$\frac{1}{1-0.8} \frac{1}{0.6} \frac{1}{0.4} \frac{1}{0.2} \frac{1}{0.2} \frac{1}{0.2} \frac{1}{0.4} \frac{1}{0.6} \frac{1}{0.8} \frac{1}{0.6} $		$\left\langle W_{p}(\vec{\alpha})W_{q}(\vec{\beta})\right\rangle = \delta_{a\bar{\beta}}\sum_{k,k=1}^{K}u_{pqk}(\vec{\alpha})$	$(\vec{\alpha}) \langle N_k(\vec{\alpha}) \rangle \varepsilon_p(\vec{\alpha}) + \sum_{k,k=1}^{K} u_{pk}(\vec{\alpha}) u_{pk}(\vec{\alpha}) u_{kk}(\vec{\alpha}) u_{kk}(\vec$	$V_{qk'}(\vec{\beta}) \langle N_k(\vec{\alpha}) (N_{k'}(\vec{\beta}) - \delta_{kk} \delta_{qk'}) \rangle$	$_{ar{a}ar{eta}} ight) ight angle arepsilon_{p}(ec{lpha})arepsilon_{q}(ec{eta})$
Identity Method – Matr	ix formulation & Sc	olution			
$V_{pq}(\vec{\alpha},\vec{\beta}) = \left\langle W_{p}(\vec{\alpha})W_{q}(\vec{\beta}) \right\rangle - \delta_{\vec{\alpha}\vec{\beta}}\delta_{pq} \sum_{k}^{p}$	$\sum_{i=1}^{K} u_{pk}^{(2)}(\vec{\alpha}) \left\langle N_{k}(\vec{\alpha}) \right\rangle \varepsilon_{k}(\vec{\alpha}) - \delta_{\bar{\alpha}\bar{q}}$	$\int_{R_{-1}}^{K} u_{pqk}(\vec{\alpha}) \langle N_{k}(\vec{\alpha}) \rangle \varepsilon_{k}(\vec{\alpha})$;)		
$\mathbb{V}_{pq}(\vec{\alpha},\vec{\beta}) = \begin{bmatrix} V_{11}(\vec{\alpha},\vec{\beta}) & V_{12}(\vec{\alpha},\vec{\beta}) & \cdots & V_{1K}(\vec{\alpha},\vec{\beta}) \\ V_{21}(\vec{\alpha},\vec{\beta}) & V_{22}(\vec{\alpha},\vec{\beta}) & \cdots & V_{1K}(\vec{\alpha},\vec{\beta}) \\ \cdots & \cdots & \ddots & \vdots \end{bmatrix}$	$\begin{bmatrix} \vec{3} \\ \vec{5} \end{bmatrix} \qquad \mathbb{N}^{(2)}(\vec{\alpha}, \vec{\beta}) = \begin{bmatrix} \langle I \\ P \end{bmatrix}$	$ \begin{array}{c} N_{1}(\vec{\alpha}) \big(N_{1}(\vec{\beta}) \big) - \delta_{\vec{\alpha}\vec{\beta}} \big) \big\rangle & \left\langle N_{1}(\vec{\alpha}) \right\rangle \\ \left\langle N_{2}(\vec{\alpha}) N_{1}(\vec{\beta}) \right\rangle & \left\langle N_{2}(\vec{\alpha}) \big(N) \right\rangle \\ & \dots \end{array} $	$ \begin{array}{ccc} \langle \mathbf{N}_{2}(\vec{\beta}) \rangle & \cdots & \left\langle N_{1}(\vec{\alpha})N_{\kappa}(\mathbf{x}) \right\rangle \\ \langle \mathbf{V}_{2}(\vec{\beta}) \rangle - \delta_{\vec{\alpha}\vec{\beta}} \rangle \rangle & \cdots & \left\langle N_{2}(\vec{\alpha})N_{\kappa}(\mathbf{x}) \right\rangle \\ \cdots & \ddots & \vdots \end{array} $	$\left. \left. \begin{array}{c} \langle \tilde{\beta} \rangle \\ \langle \tilde{\beta} \rangle \\ \rangle \end{array} \right $	
$V_{K1}(\vec{\alpha},\vec{\beta}) \cdots V_{KK}(\vec{\alpha},\vec{\beta})$	3)]	$\left\langle N_{_{K}}(\vec{\alpha})N_{_{1}}(\vec{\beta})\right\rangle$	$\cdots \qquad \cdots \qquad \langle N_{\kappa}(\vec{\alpha}) (N_{\kappa}(\vec{\beta})) \rangle$	$\left -\delta_{a\bar{a}}\right $	
$\mathbb{N}^{(2)}(\vec{\alpha},\vec{\beta}) = \mathbb{U}(\vec{\alpha})^{-1}\mathbb{V}(\vec{\alpha},\vec{\beta})$	$\vec{\beta}$) $\left(\mathbb{U}(\vec{\beta})^{T}\right)^{-1}$	$(\vec{\alpha})(N_{q}(\vec{\beta})) - \delta_{pq}\delta_{\vec{\alpha}\vec{\beta}}) \rangle =$	$\frac{\left\langle n_{p}(\vec{\alpha}) \left(n_{q}(\vec{\beta}) \right) - \delta_{pq} \delta_{\vec{\alpha}\vec{\beta}} \right) \right\rangle}{\varepsilon_{p}(\vec{\alpha}) \varepsilon_{q}(\vec{\beta})}$	$R_2^{p,q}(\vec{\alpha}^{(2)},\vec{\beta}^{(2)}) =$	$\frac{\left\langle N_{p}(\vec{\alpha}^{(2)})\left(N_{q}(\vec{\beta}^{(2)})\right) - \delta_{pq}\delta_{\vec{a}\vec{\beta}}\right)\right\rangle}{N_{p}(\vec{\alpha}^{(2)})N_{q}(\vec{\beta}^{(2)})} - 1$

Summary:

The formalism presented enables measurements of differential correlation functions for pairs of species, e.g., $\pi\pi$, πK , πp , KK, Kp, pp, that essentially recover the full statistics, extend the kinematic range of measurements while providing reliable disambiguation of particle species [2-3]. The method was developed towards measurements of differential correlation functions, e.g., R_2 , for an arbitrary number of particle species, pT dependent particle losses, as well as an arbitrary number of particle identification signals (not discussed here) but can be extended to other correlation observables.

