Anisotropic flow of multi-strange particles in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE

Ya Zhu for the ALICE Collaboration CCNU, Wuhan, China

Poster Number COR-46

Abstract

Anisotropic flow plays a critical role in understanding the properties of the quark-gluon plasma. In this poster we present the elliptic and triangular flow of multi-strange particles in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by the ALICE detector. The measurements are presented at mid-rapidity for a wide range of particle transverse momenta. The results are compared to those for elliptic and triangular flow for other identified hadrons.

Collective flow

Multiple interactions between medium constituents convert initial geometric anisotropy into a final state momentum anisotropy.

v_n of multi-strange particles

The anisotropy is quantified by a Fourier expansion of momentum distribution:

$$E\frac{d^3N}{dp^3} = \frac{d^2N}{2\pi p_T dp_T dy} \left\{ 1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n\left(\phi - \Psi_n\right)\right] \right\}$$

where ϕ is the azimuthal angle of each particle and Ψ_n is the symmetry plane angle.

$$v_n = \left\langle \cos\left[n\left(\phi - \Psi_n\right)\right] \right\rangle$$

 v_n of identified hadrons is measured using the scalar product method:

 $- \langle \langle {f u} \cdot {f Q}_{V0C}
angle
angle$

 \Diamond The value of v_2 progressively increases from central to peripheral collisions up to the 40–50% centrality.

 \diamond The transverse momentum dependence of v_2 exhibits an almost linear increase up to about 3 GeV/c.

 \diamondsuit There is no significant centrality dependence of v_3 .

v_n of identified hadrons

 $\diamond v_n$ of π^{\pm} , K^{\pm} , p and K_s^0 , Λ is measured with $| \Delta \eta | > 0.9$ gap using Pb-Pb collisions at 5.02 TeV \diamond Mass ordering is observed for $p_T < 2 \text{ GeV}/c$. $\diamond v_2$ of identified particles is non-zero up to high p_T .

$$v_n = \sqrt{\frac{\langle \mathbf{Q}_{V0C} \cdot \mathbf{Q}_{V0A} \rangle \langle \mathbf{Q}_{V0C} \cdot \mathbf{Q}_{TPC} \rangle}{\langle \mathbf{Q}_{V0A} \cdot \mathbf{Q}_{TPC} \rangle}}$$
$$\mathbf{u} = e^{in\phi}$$

$$\mathbf{Q} = \sum w_i e^{in\phi}$$

where w_i is a weight. The scalar product method allows for a $\Delta \eta$ separation between correlated particles, supressesing correlations coming from nonflow.

v_n vs. invariant mass method

For the v_n measurement of multi-strange particles, the v_n versus invariant method was used.

$p_{\rm T}/n_q$ dependence of v_n/n_q

Improvements over Run I

 \diamondsuit Larger data sample gathered in Run II compared to Run I.

 \diamond Both v_n and p_T are scaled by the number of constituent quarks (n_q) . The various hadron species approximately follow a common trend at intermediate p_T .

Conclusions

♦ Kinematic range of measurements is extended.
♦ Run II provides more stringent constraints for models.

 \diamond Clear centrality dependence is observed for v_2 of multi-strange particles.

 \otimes Mass ordering of v_n is observed for $p_T < 2$ GeV/c.

 \Diamond If both v_n and p_T are scaled by the number of constituent quarks, the various hadron species approximately follow a common trend at intermediate p_T .