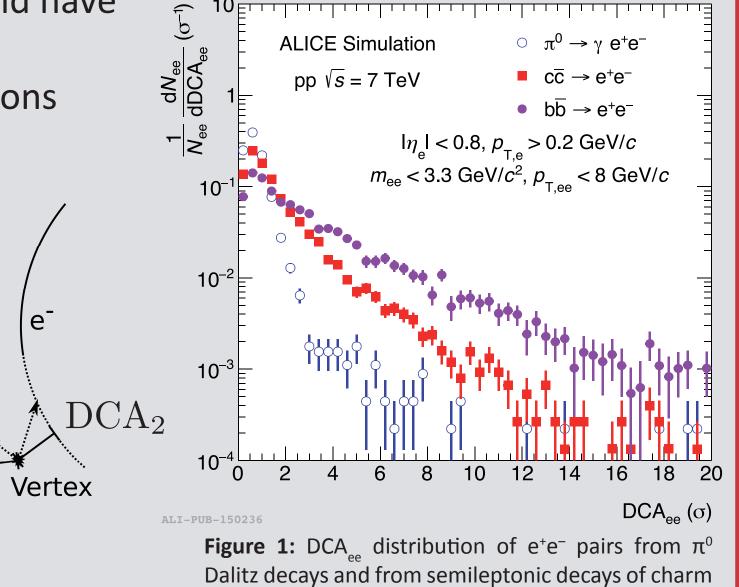
Dielectron production in proton-proton collisions $at \sqrt{s} = 7$ TeV with ALICE Sebastian Scheid¹ for the ALICE Collaboration

Motivation

 DCA_1


Dielectrons are produced in all stages of the collision and have negligible final-state interaction

 \rightarrow Excellent probe to study QGP properties in AA collisions In pp collisions:

- \rightarrow Baseline for Pb–Pb collisions
- \rightarrow Direct photon production via $\gamma^* \rightarrow e^+e^-$
- \rightarrow Study heavy-flavour production

Approach:

- \rightarrow Measure dielectron cross section as
 - a function of m_{ee} , p_{Tee} and DCA_{ee}
- \rightarrow Compare to expectation from known hadronic sources (hadronic cocktail)

Hadronic Cocktail

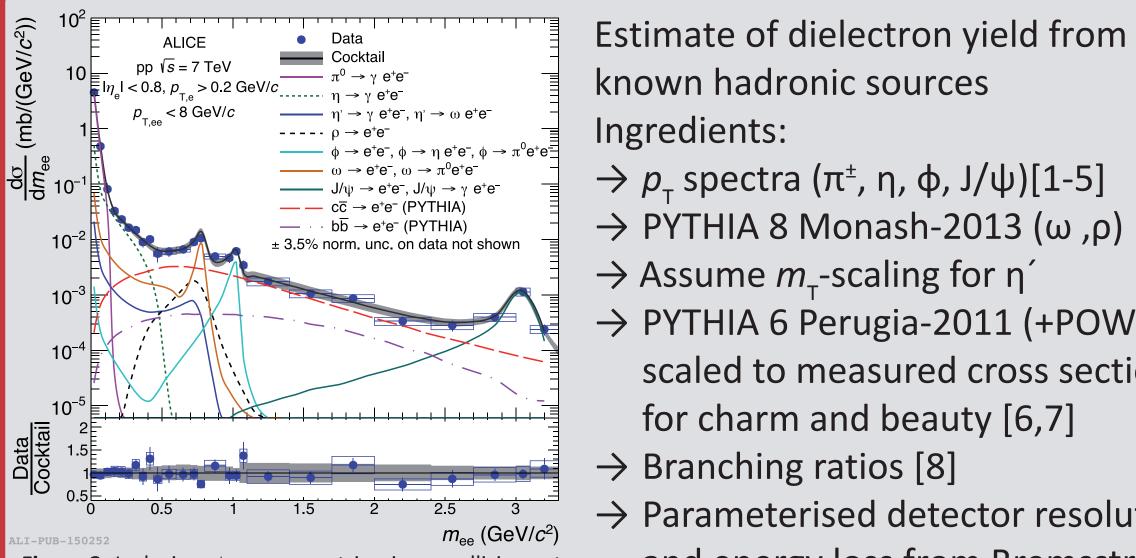


Figure 2: Inclusive e⁺e⁻ cross sectrion in pp collisions at \sqrt{s} = 7 TeV in the ALICE acceptance as function of m

known hadronic sources Ingredients: $\rightarrow p_{\tau}$ spectra (π^{\pm} , η , ϕ , J/ ψ)[1-5] \rightarrow PYTHIA 8 Monash-2013 (ω , ρ) \rightarrow Assume m_{τ} -scaling for η' \rightarrow PYTHIA 6 Perugia-2011 (+POWHEG) scaled to measured cross section for charm and beauty [6,7] \rightarrow Branching ratios [8] \rightarrow Parameterised detector resolution

ALICE

and energy loss from Bremsstrahlung

Idea:

Decay length of D and B mesons much larger than prompt sources \rightarrow Use DCA to separate prompt and non-prompt dielectrons

 $DCA_{ee} = \sqrt{[(DCA_1/\sigma_1)^2 + (DCA_2/\sigma_2)^2]/2}$

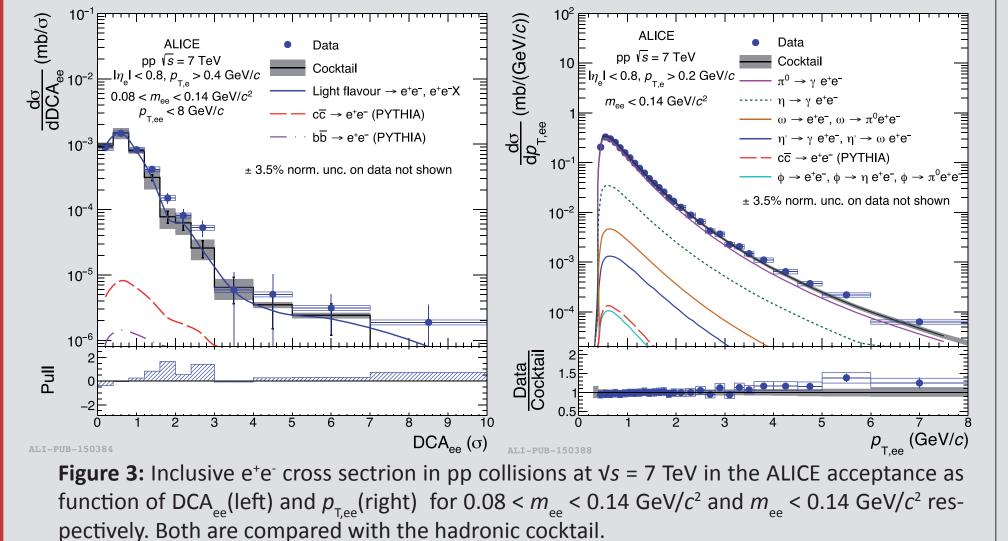
and beauty hadrons simulated with PYTHIA 6.4.25 and passed through a GEANT3 simulation of the ALICE detector. The spectra are integrated over m_{in} and $p_{T_{100}}$ and normalised to unity for comparison.

compared with the hadronic cocktail.

 \rightarrow Fiducial acceptance $(|\eta| < 0.8 \text{ and } p_{\tau} > 0.2 (0.4) \text{ GeV}/c)$

Cocktail estimation consistent with data within uncertainties

Comparison of Data and Hadronic Cocktail


Pion-mass region $m_{_{\rm PP}} < 0.14 \,\,{\rm GeV}/c^2$

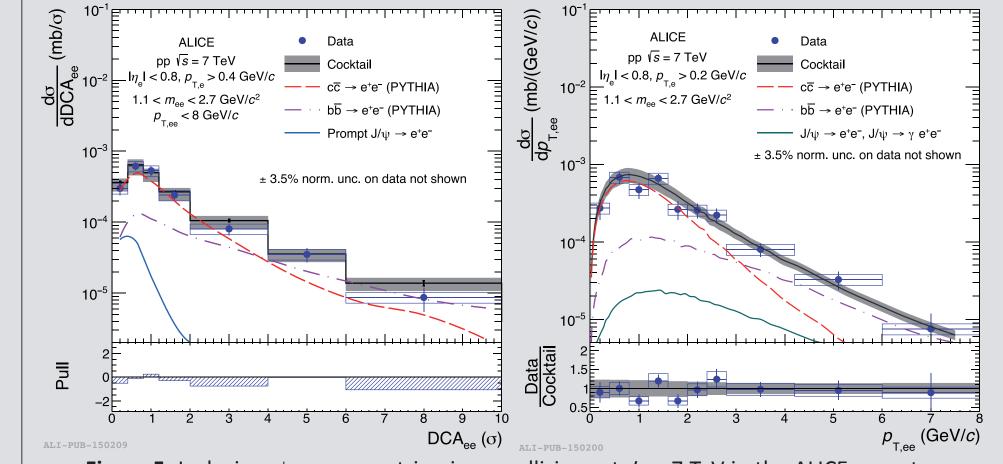
p_{T,ee}

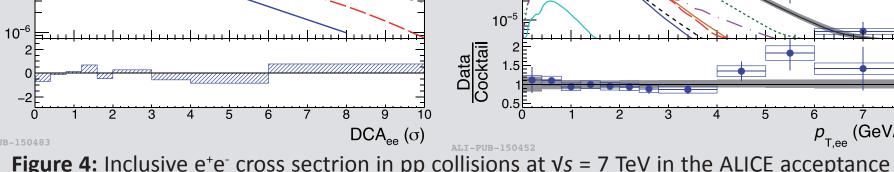
 \rightarrow Dielectron measurement in agreement with charged-pion measurement

DCA

- \rightarrow Only prompt sources expected
 - \rightarrow DCA defined by the detector resolution
 - \rightarrow Good description over three orders of magnitude

Resonance mass region $0.14 < m_{_{ee}} < 1.1 \, \text{GeV}/c^2$


- Heavy flavour (HF) contribution already dominates for $m_{ee} > 0.7 \, \text{GeV}/c^2$
- \rightarrow Prompt and non-prompt sources can be separated via DCA
- \rightarrow Useful in Pb–Pb collisions to measure thermal QGP radiation in the intermediate mass region (IMR)
- \rightarrow DCA_a resolution improvement in RUN3 after the ITS upgrade

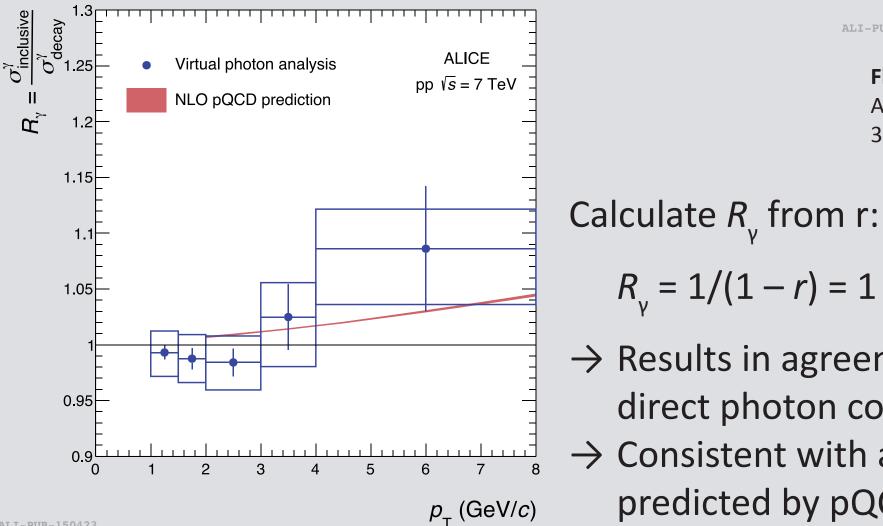

ot do do do do do $\rightarrow v e^+e^-$. n' $\rightarrow \omega e^+e^-$ — → bb → e⁺e⁻ (PYTHIA) 3.5% norm. unc. on data not showr $-\phi \rightarrow e^+e^-, \phi \rightarrow \eta e^+e^-, \phi \rightarrow \pi^0 e^+e^-$

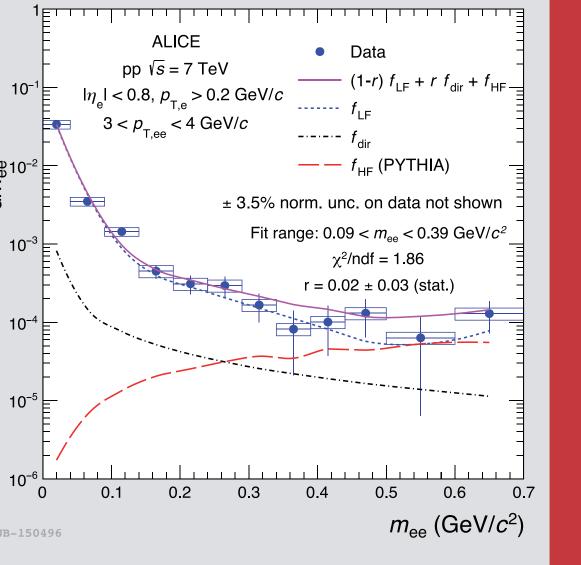
Intermediate mass region $1.1 < m_{_{\rm PP}} < 2.7 \,\,{\rm GeV}/c^2$

Charm dominates at low $p_{T,ee}$ (< 3 GeV/c) and small DCA_{ee} Beauty dominates for high p_{Tee} (> 3.5 GeV/c) and large DCA

- \rightarrow Disentangle their contributions by fitting templates to data points
- \rightarrow No indication for prompt dielectron source \rightarrow Drell-Yan is negligible in the IMR at LHC energies

Figure 4: Inclusive e^+e^- cross sectrion in pp collisions at $\sqrt{s} = 7$ TeV in the ALICE acceptance as function of DCA_a (left) and $p_{\tau_{ac}}$ (right) for 0.14 < m_{ac} < 1.1 GeV/ c^2 and 0.14 m_{ac} < 0.7 GeV/ c^2 respectiveley. Both are compared with the hadronic cocktail.


Figure 5: Inclusive e^+e^- cross sectrion in pp collisions at $\sqrt{s} = 7$ TeV in the ALICE acceptance as function of DCA_{ee}(left) and p_{Tee} (right) for $1.1 < m_{ee} < 2.7 \text{ GeV}/c^2$. Both are compared with the hadronic cocktail.


Direct Photon Extraction

Direct photon measurement via $\gamma^* \rightarrow e^+e^-$ can reduce background from $\pi^0 \rightarrow \gamma \gamma$ drastically \rightarrow Fit mass spectrum in 0.09 < m_{ee} < 0.39 GeV/ c^2 in $p_{\text{T,ee}}$ intervals with one free parameter *r*:

 $f(m_{ee}) = r \times f_{dir}(m_{ee}) + (1 - r) \times f_{LF}(m_{ee}) + f_{HF}(m_{ee})$

- ratio of direct to inclusive photons
- e⁺e⁻ from direct photons, mass shape
- obtained from Kroll-Wada equation (QED) e⁺e⁻ from light- or heavy-flavour sources

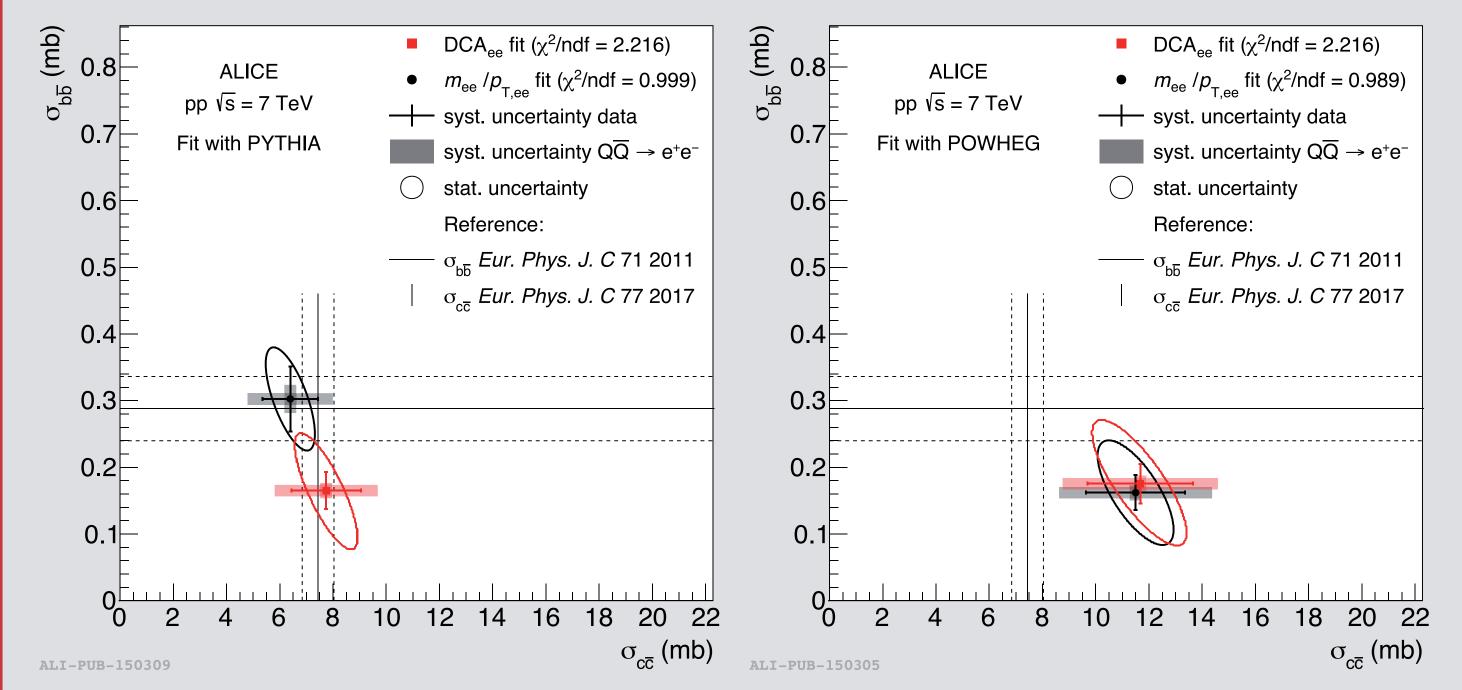


Figure 6: Fit of e^+e^- cross section in $\sqrt{s} = 7$ TeV in the ALICE acceptance as a function of mee in the range $3 < p_{T_{ee}} < 4 \text{ GeV/}c$ with a three-component function.

Heavy Flavour Cross Sections

Extract $\sigma_{c\overline{c}}$ and $\sigma_{b\overline{b}}$ by fitting $d\sigma/(dm_{e} dp_{Tee})$ and $d\sigma/dDCA_{e}$ in the IMR with $c\overline{c}$ and $b\overline{b}$ templates from PYTHIA (LO) and POWHEG (NLO) with PYTHIA parton shower \rightarrow Large model dependence observed

 \rightarrow Sensitivity to different implementations of heavy-quark production [Poster, ID 879]

- $R_{y} = 1/(1-r) = 1 + N_{y,dir}/N_{y,decay} = N_{y,inclusive}/N_{y,decay}$ \rightarrow Results in agreement with unity, no significant direct photon contributions
- \rightarrow Consistent with a small direct photon fraction as predicted by pQCD[9] within large uncertainties

Figure 7: Ratio of inclusive to decay photon cross sections extracted from the dielectron spectra measured in pp collisions at $\sqrt{s} = 7$ TeV compared with NLO pQCD calculations[8].

- [1] ALICE, Multiplicity dependence of charged pion, kaon and (anti)proton productionat large transverse momentum in pPb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, Phys. Lett **B760** (2016) 720
- [2] ALICE, Neutral pion and eta meson production in proton-proton collisions at $\sqrt{s} = 0.9$ TeV and $\sqrt{s} = 7$ TeV, Phys. Lett. **B717** (2012) 162
- [3] ALICE, Production of $K^*(892)^\circ$ and $\phi(1020)$ in pp collisions at $\sqrt{s} = 7TeV$, Eur. Phys. J. **C72** (2012) 2183
- [4] ALICE, ω production measurement in th $\pi^0 \pi^+ \pi^-$ decay channel in pp collisions at $\sqrt{s} = 7$ TeV with ALICE,

Figure 8: Total cc and bb cross sections extracted from a fit of the measured dielectron yield from heavy-flavour hadron decays in (m_{ee}, p_{Tee}) and in DCA_{ee} with PYTHIA (left) and POWHEG (right). The results and their uncertainties are compared to published cross sections (solid lines), for which the total uncertainty is represented in dashed lines.

Paper on arXiv:

- [5] ALICE, Rapidity and transverse momentum dependence of inclusive J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV, Phys. Lett. **B704** (2011) 442 [Erratum: Phys. Lett. **B718** (2012) 692]
- [6] ALICE, Measurement of D-meson production at mid-rapidity in pp collisions at $\sqrt{s} = 7 \text{ TeV}$, Eur. Phys. J. C77 (2017) 550
- [7] LHCb, Measuremnt of J/ψ production in pp collisions at $\sqrt{s} = 7 \text{ TeV}$, Eur. Phys. J. **C71** (2011) 1645
- [8] Particle Data Group, *Review of Particle Physics*, Chin. Phys. **C40** (2016)
- [9] L. Gordon and W. Vogelsang, *Polarized and unpolarized prompt photon production beyond the leading order*, Phys. Rev. **D48** (1993) 3136

ALI-PUB-150423

May 15th 2018 ¹scheid@ikf.uni-frankfurt.de IKF, Goethe-Universität Frankfurt