Estimation of background for photon-hadron correlations in proton-lead collisions at $\sqrt{s_{\rm nn}}{=}5.02\,{\rm TeV}$

Alwina Liu, Miguel Arratia, Barbara Jacak, Yue Shi Lai alwina@lbl.gov

Direct γ -hadron correlations	Calculating γ_{direct} and R_{γ}	Fitting
• γ -hadron correlations measure the fragmentation function, which may be modified by energy loss in	• Direct photon measurement in p-Pb collisions at 5.02 TeV is not yet available	• Fit each γ_{direct} calculation and the γ_{decay} to a Tsal- lis function. Residuals:
the QGP • The photon energy is not affected by the OGP –	• Estimate $R_{\gamma} = 1 + \gamma_{\text{direct}} / \gamma_{\text{decay}}$ via calculation	0.01
gives information about the parton energy prior to QGP interaction	• 2 direct photon calculations:	

- Hadrons arise from partons fragmenting into jets
- Goal: measure γ_{direct} -hadron correlations; detector sees γ inclusive-hadron correlations
- γ_{decay} -hadron correlations can be unfolded to get γ_{direct} -hadron correlations from the data as done in [1]:

Decay photon spectrum

• Calculate decay $\frac{\mathrm{d}\sigma^{\gamma}}{\mathrm{d}p_{T}^{\gamma}}$ from π^{0} using $\frac{\mathrm{d}\sigma^{\pi^{0}}}{\mathrm{d}p_{T}^{\pi^{0}}}$ and the joint probability distribution $P(p_{T}^{\pi^{0}}, p_{T}^{\gamma})$ (similar procedure for η)

- PeTeR[2]: NNNLL resummed cross section for pp, scaled by A = 208
- Independent calculation received from W.
 Vogelsang[3][4][5]

Photon spectra

- Calculate R_{γ} for each γ_{direct} calculation by dividing γ_{direct} by γ_{decay} and adding 1
- Combine 2 sources of systematic uncertainty:
 - Total spread between calculations
 - Errors from decay photon calculation

Calculated R_{γ}

 $\frac{\mathrm{d}\sigma^{\gamma}}{\mathrm{d}p_{T}^{\gamma}} = \int dp_{T}^{\pi^{0}} P(p_{T}^{\pi^{0}}, p_{T}^{\gamma}) \frac{\mathrm{d}\sigma^{\pi^{\circ}}}{\mathrm{d}p_{T}^{\pi^{0}}}$

• For the photon cross section in $a < p_T^{\gamma} < b$, the joint probability distribution is integrated across the entire $\pi^0 p_T$ range:

$$\left. \frac{\mathrm{d}\sigma^{\gamma}}{\mathrm{d}p_{T}^{\gamma}} \right|_{a < p_{T}^{\gamma} < b} = \frac{1}{b-a} \int_{0}^{\infty} \mathrm{d}p_{T}^{\pi^{0}} \frac{\mathrm{d}\sigma^{\pi^{0}}}{\mathrm{d}p_{T}^{\pi^{0}}} \times P(p_{T}^{\pi^{0}}, a, b)$$

• The joint probability can be calculated analytically and gives the "sharkfin" distribution, which depends on the p_T^{γ} range:

• Measurements and Tsallis function parameterizations of the π^0 and η spectra were published in [6]

Tsallis
$$(p_T) = \frac{A}{2\pi} \frac{(n-1)(n-2)}{nT(nT+m(n-2))} \times \left(1 + \frac{\sqrt{m^2 + p_T^2} - m}{nT}\right)^{-n}$$

- Parameters A, n, T have uncertainties from the fits
- Fit uncertainties of parameters A, n, T propagated by integrating 5000 times per bin
 - Each integration uses parameter values drawn from a Gaussian distribution (mean is given value, standard deviation is fit uncertainty)
- The mean and standard deviation of the 5000 integration results were calculated for each p_T^{γ}

Conclusion

- Constructed R_{γ} using 2 γ_{direct} calculations and γ_{decay} from measured π^0 and η for 5.02 TeV p-Pb collisions
- R_{γ} ranges from ~ 1.0 to ~ 1.3 for the p_T range 8-20 GeV/c
- Uncertainty is dominated by spread of γ_{direct} calculations

• Decay photons calculated from published parameterizations of the measured π^0 and η spectra

- bin – Gives $\frac{\mathrm{d}\sigma^{\gamma}}{\mathrm{d}p_{T}^{\gamma}}$ and the corresponding error for each bin
- Decay photons for π^0 and η are calculated separately, then added together to get the total decay photon spectrum

References

 A. Adare, et al., Phys.Rev.C80 024908 (2010)
 T. Becher, C. Lorentzen and M. D. Schwartz, Phys.Rev.D86 054026 (2012)
 W. Vogelsang, Private communcation
 L. E. Gordon and W. Vogelsang, Phys.Rev.D48 3136 (1993)
 B. Jager, A. Schafer, M. Stratmann, W. Vogelsang, Phys.Rev.D67 054005 (2003)
 Find and cite ALICE neutral meson paper

Acknowledgements

This work was supported by the Stuart J. Freedman Memorial Fellowship at UC Berkeley and the US Department of Energy.