

# **STUDY OF TWO-PARTICLE CORRELATIONS WITH PHOTON AND PION** TRIGGERS IN PP COLLISIONS AT 13 TEV WITH ALICE AT THE LHC

**RAN XU** FOR THE ALICE COLLABORATION

Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, CCNU, Wuhan, China



 $\sigma_{
m long}$ 

#### **MOTIVATION**

neutral particles (clusters)

- > The quark-gluon plasma is a strongly interacting medium, which is produced in Pb-Pb collisions at the LHC.
- $\blacktriangleright$  Recent measurements in pp collisions show similar behavior in high multiplicity events as in Pb-Pb events [2].
- $\succ$  Hot quark-gluon matter properties can be studied by hard partons propagating through it and ultimately fragmenting to jets.  $q_{a}$
- > Direct photons do not interact strongly in the QGP and can be used to tag parton energy.
- $\triangleright$  Direct photons at high  $p_{\rm T}$  are produced mainly in Compton and annihilation hard processes.
- $\succ$  Correlation with hadrons and jets informs us of the medium-induced modifications of partons in the medium [3].
- Same measurements in pp collisions are necessary as a baseline for AA collisions.
- > Study the fragmentation of quark or gluon jets comparing direct photon jet/hadron correlations (mainly quark jets) or  $\pi^0$ -hadron/jet correlations (mainly gluon jets).

## **ALICE APPARATUS**





## $\pi^0/\gamma$ IDENTIFICATION IN EMCAL/DCAL

 $\succ$  Significant enhancement at high  $p_{\rm T}$  via Level 1 online triggers

### **AZIMUTHAL CORRELATION**

- $\succ$  Observable: azimuthal correlations between triggers and associated hadrons.  $\Delta \varphi = \varphi^{trig} - \varphi^{hadron}$
- > Interested in per-trigger yield  $J(\Delta \varphi) = C(\Delta \varphi) B(\Delta \varphi)$  in two regions [3]:
  - Near side (trigger side):  $|\Delta \varphi| < 0.7$
  - Away side (recoiling parton side):  $|\Delta \varphi \pi| < 1.1$





 $\succ$  Cluster shape described by  $\sigma_{long}^2$ .

(larger semi-major axis of the 2D dispersion matrix of a cluster)

- $\succ \pi^0$  selection with energy dependent cut on  $\sigma_{long}^2$ .
- (larger major axis due to opening angle between the two decay photons)
- $\succ$  Photon selection with small  $\sigma_{long}^2$ .



## **ISOLATION METHOD**

- $\blacktriangleright$  Direct photons are isolated, no hadronic activity near the photon in hard process [5].
- $\succ$  High  $p_{\rm T} \pi^0$  shape similar with direct photon and dominate mainly background contribution. charge particles (tracks)
- > Isolation for both neutral and charged
  - the candidate is isolated if  $\sum p_T^{in \, cone} < p_T^{thres} (p_T^{thres} = 1 \, \text{GeV}/c)$ .
  - within  $R = \sqrt{(\Delta \varphi)^2 + (\Delta \eta)^2}$  (R = 0.4).



#### **ISOLATED PARTICLE CORRELATION**

 $\succ$  Observable:  $x_E$  distribution to approach the fragmentation function [1].



#### **SUMMARY AND OUTLOOK**

- $\succ$  ALICE can measure the  $\pi^0$  and direct photons  $\Delta \varphi$  and  $x_E$  distribution in pp collisions with sufficiently high precision by using new triggered data taken in RUN2.
- > Such kind of correlation measurement provides a powerful approach to measure medium effects in heavy-ion collisions.
- $\succ$  In future:
  - Correction and systematics for  $\gamma/\pi^0$  -hadron correlations.
  - Perform same measurements in high multiplicity pp events.

#### REFERENCES

[1] PHENIX Collaboration. Phys. Rev. D 82, 072001 (2010). [2] ALICE Collaboration. Nature Physics 13, 535 (2017). [3] ALICE Collaboration. Phys. Lett. B 763, 238250 (2016). [4] Allen. J et al. CERN-LHCC-2010-011 ; ALICE-TDR-14-add-1. [5] Ichou. R and d'Enterria. D. Phys. Rev. D 82, 014015 (2010).



RAN XU, Central China Normal University, WUHAN, CHINA mail: ran.xu@cern.ch