Dielectron production in pp collisions at $\sqrt{s} = 13$ TeV measured in a dedicated low magnetic-field setting with ALICE

Jerome Jung¹ for the ALICE Collaboration

Motivation

Electron-positron pairs are produced at all stages of the collision and are unaffected by strong interactions

- → Ideal penetrating probe to study the space-time evolution of the Quark-Gluon Plasma created in ultra-relativistic heavy-ion collisions
- → Understanding the primordial dielectron production in pp collisions crucial as vacuum baseline

Bulk of the dielectron yield is located at low momenta

→ Dedicated low-mass dielectron runs with a reduced current in the ALICE L3 solenoid magnet:

Magnetic field reduced from B = 0.5 T to 0.2 T

- → Overall charged-particle acceptance increased
- → Improve background rejection capabilities
- \rightarrow Access to low- $p_{\scriptscriptstyle T}$ particle production

p (GeV/c)

real signal, correlated & combinatorial background

Combinatorial pairing of all candidates:

correlated & combinatorial background

R: Acceptance correction factor $R = ULS_{mix} / LS_{mix}$

 \rightarrow Small S/B ratio: crucial to improve it

→ Main background source: electrons from

γ conversions in the detector material

 \rightarrow Signal $S = ULS - LS \cdot R$

Figure 3: Specific energy-loss of electron candidates in

the TPC as a function of their momentum after all cuts.

- Unlike-sign (*ULS*) pairs:

- Like-sign (LS) pairs:

Signal Extraction:

Similar configuration planned for dielectron studies with ALICE in LHC Run 3 and 4

LMR excess at AFS

Figure 2: Mass distribution of dielectrons after the sub traction of the combinatorial background as a function of the pair mass measured by the AFS experiment [1].

Intersecting Storage Rings (CERN, 1987): Excess of dielectrons over expectation from known hadronic sources measured by the AFS experiment in pp collisions at \sqrt{s} = 63 GeV:

- $-0.05 < m_{_{\rm PP}} < 0.6 \,{\rm GeV}/c^2$
- $p_{\text{T.ee}}$ < 1 GeV/c

with a single-electron trigger $p_{\text{T.el}} > 0.2$ GeV/c and the requirement on the second electron $p_{\text{T,e2}} > 0.04 \text{ GeV/}c$

The low-field configuration provides the possibility to probe a similar regime and allows a complementary measurement for the first time at LHC energies

Analysis

Electron identification:

- Electron 3σ selection using Time Projection Chamber (TPC) & Time Of Flight (TOF) if available
- + 3σ hadron rejection in the dE/dx of TPC
- + TOF information to recover electron candidates
- → Similar electron purity but higher electron selection efficiency compared to requiring TOF, down to a momentum of 0.075 GeV/c

pp \sqrt{s} = 13 TeV with B = 0.2 T $p_{_{\rm T,0}} > 0.075 \text{ GeV/}c, |\eta_{_{\rm e}}| < 0.8$ $p_{\text{Too}} < 6 \text{ GeV/}c$

Figure 4: Illustration of the like-sign subtraction method. The unlike-sign pairs are shown in red, the like-sign in blue and the resulting signal in black.

Comparison to nominal field

 $L_{\rm int}^{\rm low} = 2.7 \pm 0.1 \text{ nb}$

Advantages of the low-field configuration: Improved performance of conversion rejection in low magnetic-field configuration via a veto

on shared clusters in the ITS in combination with an increased TOF acceptance at low momenta lead to:

 $L_{\rm int}^{\rm low} = 2.7 \pm 0.1 \text{ nb}$

ALICE performance

pp, \sqrt{s} = 13 TeV

B = 0.2 T

Momentum (GeV/c)

Figure 1: Specific energy-loss in the TPC as a function of the particle

momentum for the low-field configuration.

Clear improvement in S/B in all mass regions

Figure 5 & 6: Comparison of two cut settings with ITS shared cluster cut, one in the low-field envi-

ronment from this analysis (red) and one in nominal field [2] (blue), to illustrate the effect of the

magnetic field on the ITS shared cluster cut in signal over background and significance.

Boost in significance per event

ALICE Preliminary

 $p_{\rm T,e} > 0.2 \; {\rm GeV}/c, \; |\eta_{\rm e}| < 0.8 \ p_{\rm T,ee} < 6 \; {\rm GeV}/c$

→ Increase sensitivity for

soft virtual-photon production

Effect of low-field configuration on the resolution small

For the first time in ALICE the low-field configuration enables a lower single-leg p_{\perp} cut of 0.075 GeV/c

→ Extend acceptance for small m_{ee} and $p_{T,ee}$

Figure 8: Acceptance gain as a function of *m* and p_{Tee} due to the lower single-leg p_{T} -cut and increased TOF acceptance at low momenta

Figure 10 & 11: The dielect-

ron cross section in pp colli-

sions at $\sqrt{s} = 13$ TeV as a

functionas p_{Tee} in the π and

LMR excess region (blue

points) compared to the ha-

dronic cocktail (black line)

and its different contribu-

tions (colored lines). The

bottom panel shows the

ratio of data over cocktail.

Comparison to AFS

— Cocktail --- $\pi^0 \rightarrow \gamma ee$ pp \sqrt{s} = 13 TeV with B = 0.2 $> 0.075 \text{ GeV/}c, |\eta_{a}| < 0.8$ --- $\eta' \rightarrow \gamma ee, \eta' \rightarrow \omega ee$ $p_{T_{AA}} < 0.4 \text{ GeV/}c$ $d\sigma/dm_{\rm ee}$ --- J/ $\psi \rightarrow ee$, J/ $\psi \rightarrow \gamma ee$ 10a/Cocktail Da $m_{\rm ee}~({\rm GeV}/c^2)$ ALI-PREL-148053 Figure 9: The dielectron cross-sectrion in pp collisions at $\sqrt{s} = 13$ TeV as a function

of $m_{\rm ee}$ for $p_{\rm T,ee}$ < 0.4 GeV/c with a single-leg cut $p_{\rm T}$ < 0.075 GeV/c (blue points) compared to the hadronic cocktail (black line) and its different contributions (colored lines). The bottom panel shows the ratio of data over cocktail.

Cocktail of know hadronic sources:

 π^0 based on 13 TeV π^{\pm} measurement [3] - η from measured ratio of η/π^0 [4,5] ρ and ω based on ρ/π^0 and ω/π^0 parametrisations from PYTHIA8 Monash-13 and compatible with measurements [6,7] η' and φ are derived from m_{τ} scaling Open charm and beauty generated with PYTHIA6 Perugia2011 scaled to the cross section at 13 TeV via FONLL extrapolation based on the 7 TeV measurement [8,9] $((d\sigma_{cc}/dy)|_{v=0} = 1.296 \pm 0.17 \text{ mb at } 13 \text{ TeV})$ $((d\sigma_{bb}^{c}/dy))|_{v=0}^{y=0}$ = 68.1⁺¹⁵₋₁₆ µb at 13 TeV) J/ψ measured at 7 TeV [10] and extrapolated to 13 TeV like open heavy flavours $((d\sigma_{J/\psi}/dy))_{v=0} = 9.55^{+1.54}_{-1.57} \,\mu b \text{ at } 13 \text{ TeV})$

Hint for enhancement at LHC energies in the mass region $0.14 < m_{eq} < 0.6 \text{ GeV}/c^2$

- \rightarrow 2.2 σ statistical significance, ignoring systematic uncertainties on data and cocktail Conservative approach: cocktail uncertainty of η derived from m_{τ} scaling conjecture
 - \rightarrow Overpredicts η yield especially at low p_{τ} (low- p_{τ} η from CERES-TAPS at lower $\forall s$)

Pair momentum dependence

→ Low-field configuration crucial to probe this region

- → More low *B*-field data underway
- \rightarrow A low- p_{τ} η measurement at LHC energies essential to quantify a possible enhancement

Outlook

- Data significance will be increased with 2018 low-field data sample
- Study multiplicity dependence of LMR excess
- Improve n measurement to reduce systematic uncertainties of the hadronic cocktail

- [1] V. Hedberg, Production of Positrons with low transverse momentum and low-mass electron-positron pairs in proton-proton collisions at a center-of-mass energy of 63 GeV,PhD thesis, Lund (1987)
- [2] I. Vorobyev for the ALICE collaboration, poster at this conference (ID 239), paper on arXiv: 1805.
- ALICE, Production of light flavor hadrons in pp collisions at $\sqrt{s} = 13$ TeV, in preparation ALICE, Neutral pion and eta meson production in proton-proton collisions at νs = 0.9 TeV and νs = 7 TeV, Phys. Lett. B717 (2012) 162 [9] LHCb, Measuremnt of J/ψ production in pp collisions at νs = 7 TeV, Eur. Phys. J. C71 (2011) 1645

[5] ALICE, Neutral pion and η meson production in p-Pb collisions at $\sqrt{s}_{NN} = 5.02 \text{ TeV}$

[6] ALICE, Production of the $\rho(770)^0$ meson in pp and Pb–Pb collisions at $\sqrt{s}NN = 2.76$ TeV, in preparation

[7] ALICE, ω production measurement in th $\pi^0\pi^+\pi^-$ decay channel in pp collisions at $\forall s = 7$ TeV with ALICE, public note in preparation

[8] ALICE, Measurement of D-meson production at mid-rapidity in pp collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C77 (2017) 550

[10] ALICE, Rapidity and transverse momentum dependence of inclusive J/ψ production in pp collisions at $\sqrt{s} = 7 \text{ TeV}$, Phys. Lett. **B704** (2011) 442 [Erratum: Phys. Lett. **B718** (2012) 692]

