MVA based Background Rejection in the Analysis of Low-Mass Dielectrons in Pb-Pb Collisions with ALICE

Sebastian Lehner*
(on behalf of the ALICE collaboration)
*Stefan Meyer Institute for Subatomic Physics, Vienna, Austria

The measurement of e^+e^- pair production in ultra-relativistic heavy-ion collisions offers a way to investigate the temperature of the quark-gluon plasma (QGP) created in such collisions and to search for signatures of chiral symmetry restoration in the line shape of the p_T. The dominant background in the analysis originates from photon conversions in the detector material. Numerous observables allow for discrimination of this background which motivates a multivariate approach in the classification of dielectron pairs. The latest results of the low-mass dielectron analysis obtained with machine learning methods in Pb-Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV are presented.

1. Physics of Low-Mass Dielectrons

Virtual Thermal Photons:
- Thermal radiation from the hadronic gas and QGP
- Photons are blue shifted due to radial expansion of the medium
- Lorentz invariant thermometer based on mass:

Chiral Symmetry Restoration:
Disappearance of chiral condensate in QGP may modify the p_T mass shape

Dark Photons:
Would show up as peak in continuum of Dalitz decay

2. Signal & Background Dielectrons

Signal (S): Unlike sign (US) pair from same hadron (h)
Background (BG): all other pairs

Like sign (LS) subtraction:
LS pairs are combinatorial
BG1 & BG2 can be subtracted with LS

\[S = US - LS \]

Statistical significance of signal $z = \frac{S_{\text{Signal}} - S_{\text{Background}}}{\sigma} = \frac{(S_{\text{Signal}} - (US + LS))}{\sqrt{2}}$

Aim: reduce US and LS while keeping S unchanged

Dominant BG: BG2 - Combinatorial with conversions
BG subtraction needs to be more precise than $S/BG > 10$^{-2}

3. Neural Network Training

Neural Network (NN) training on single tracks from Monte Carlo (MC) simulations

Signal: tracks not from conversions
Background: tracks from conversion

Variables
19 observables are used for BG rejection
- DCA, p_T, shared clusters, p_T

Example: DCA, for rejection of BG2 & BG3:
Distance of closest approach of track to the primary vertex in xy-plane

Discrimination of BG via cut on NN output (MVA cut):
Maximize Significance $S = US - LS$ on real data

Optimal MVA cut: NN output $= 0.35$

Data-driven performance evaluation

4. Evaluation on MC

Comparison of MVA cut to traditional cut-based analysis

Cut variable example: number of shared clusters in inner tracker

Comparison on single track level: DCA,
Signal: tracks not from conversions
Background: tracks from conversion

Comparison on pair level: m_{ee},
Signal: pairs w/ conversions
Background: pairs w/ conversions

MVA has stronger rejection in BG dominated region and vice versa

MVA cut chosen to have same S yield as traditional cuts: less BG

5. Evaluation on Data

Comparison of statistical significance on data

Comparable significance in $m_{ee} > 0.6$ GeV/c2

Higher statistical significance in $m_{ee} < 0.6$ GeV/c2

6. Summary

Conversion electrons are the dominant background for low-mass dielectrons
Numerous different variables carry relevant information to identify them
Neural network is trained on MC to discriminate conversion electrons
More efficient background rejection on MC with NN than with standard cut-based method
Compatible results with data: NN achieves higher statistical significance for $m_{ee} < 0.6$ GeV/c2

Outlook
- Apply efficiency correction
- Estimate systematic uncertainty in the dielectron spectrum associated to MVA cut
- Implementation of an independent MVA based electron PID
- Comparison of dielectron mass spectrum to expectation from known hadronic sources