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DATA QUALITY ASSURANCE

Ï Quality Assurance (QA) and Data Quality Monitoring
(DQM): recording data of the highest quality and data taking
procedure occurs as expected

Ï Currently, data quality assurance in ALICE TPC partially relies on
manual labour of highly qualified detector experts

Ï Label assignment based on a set of features related to the
statistical parameters of a run

Classi�cation methods
Evaluated machine learning methods for quality label assessment:

Ï Random Forest + ADABoost - Adaptive ensemble classifier
based on decision trees, predicting the class which was chosen with
most of components.

Ï Support Vector Machine - non linear classifier, which tries to maximize
the possible distance from decision boundary to any data samples.

Ï Naive Bayes Classifier - basic classification algorithm deriving straight
from Bayesian theorem.

Ï Probabilistic neural networks - a Rosenblatt’s perceptron which is
trained to predict the probability of given sample belonging to each
class.

Dataset

Ï Over 1400 runs
Ï Recorded by ALICE between January 2016 and July 2017
Ï 250 numerical attributes – statistical descriptions from trending.root
Ï Ground truth: samples manually annotated by experts with one of
out of five labels:

Label Nr of runs

Fully operational 795
Not set* 99

Off 373
Partial acceptance 110

Unusable 68

*Class Not Set is assigned when experts are not sure about the quality of a certain sample

Problem

Ï Data split to 3 binary classification problems corresponding to
real-life use cases

Ï The goal: reduction of a false positive rate

Class
Definitely
good Good

Definitely
bad

Fully operational very good good To check

Partial Acceptance To check good To check
Not set To check To check To check

Unusable To check To check bad

Experimental protocol

Ï data preprocessing: outliers removal, PCA dimensionality reduction
Ï automatic hyperparameter optimization
Ï adaptive boosting
Ï k-fold cross validation

Results

Conclusions

Ï A Random Forest with adaptive boosting significantly
outperforms other methods across all use cases

Ï It allows to assign the quality label in 75% of the cases with
over 95% accuracy

FAST SIMULATIONS

Ï Generative (GAN) models used for fast simulation
Ï Widely used for generation of photo-quality artificial images
Ï The first step towards semi-real-time Quality Assurance solution
for anomaly detection

Ï Fast inference of machine learning methods allows for fast
generation of plausible "healthy" detector states

Ï Comparing real detector outputs with synthetic "healthy" indicates
determines anomalies

Evaluated generative models

Ï Generative Aversarial Networks (GAN)
Ï Multi Layered Perceptron (MLP) GAN
Ï Long Short Term Memory(LSTM) GAN
Ï Deep Convolutional GAN (DCGAN)

Ï Variational Autoencoder (VAE)
Ï Standard Variational Autoencoder
Ï Convolutional Autoencoder

To reduce visible aliasing, we implement a progressive training method
for DCGAN model.

Figure 1: Architecture of the network for progressive training

Exemplar results

Figure 2: Pion TPC clusters simulated with DCGAN (blue) and full detector response
with GEANT3 (orange).

Figure 3: Simulation of TPC clusters with (left) conditional DCGAN method and (right)
full detector response with GEANT3.

Quantitative comparison

Method MSE (mm) Speed up

GEANT3 0.085 1

VAE 37.415 104

cVAE 13.33 10

MLP 55.385 104

LSTM 54.395 104

DCGAN 26.18 102

proGAN 0.88 30

Figure 4: Performance of GAN methods w.r.t. traditional simulation.

Conclusions

Ï Proof of concept work showing promising results
Ï Significant speed-up w.r.t. traditional detector simulation
Ï Needs more tuning to get physical results
Ï Close cooperation with the CERN group developing GANs for EM
calorimeters

Ï Mutual benefits for the HEP and ML fields

PARTICLE IDENTIFICATION

Ï Efficient identification of particles is crucial for many physics analyses
Ï Traditional PID methods are based on sub-omptimal "cuts"
Ï "Cuts" optimalisation is a time-consuming manual task
Ï Classification of particles is a perfect task for machine learning

Dataset

Ï PYTHIA6 Perugia-0, pp @
p
s = 7 TeV with full detector response

Ï Selection of charged hadrons – pions, kaons, protons
Ï Signals from the TPC and TOF detectors used

Classi�cation method
Traditional PID:

Ï 0.2< pT < 0.5 GeV/c – TPC only, Nσ,TPC < 2

Ï pT > 0.5 – TPC and TOF,
√
NK
σ,TPC

2+NK
σ,TOF

2 < 2
Machine learning-based PID:

Ï Random Forest classifier

Exemplar results

Figure 5: Efficiency of charged kaon selection by traditional and ML-based PID.

Figure 6: Purity of charged kaon selection by traditional and ML-based PID.

ML PID selection details

Figure 7: Importance of track parameters as inputs for Random Forest decision.

Figure 8: ROC curve for Random Forest classifier.

Conclusions

Ï Random Forest surpasses traditional PID
Ï High purity sample can be selected with very high efficiency
Ï Automation of particle selection process – no "trial and error"
attempts

Ï Significantly lowered systematic uncertainties due to PID
Ï Quality of final classification more vulnerable to discrepancy between
Monte Carlo generated and real data


