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DATA QUALITY ASSURANCE FAST SIMULATIONS PARTICLE IDENTIFICATION

> Quality Assurance (QA) and Data Quality Monitoring » Generative (GAN) models used for fast simulation » Efficient identification of particles is crucial for many physics analyses
(DQM): recording data of the highest quality and data taking » Widely used for generation of photo-quality artificial images » Traditional PID methods are based on sub-omptimal "cuts"
procedure occurs as expected » The first step towards semi-real-time Quality Assurance solution » "Cuts" optimalisation is a time-consuming manual task

~ Currently, data quality assurance in ALICE TPC partially relies on for anomaly detection » Classification of particles is a perfect task for machine learning
manual labour of highly qualified detector experts » Fast inference of machine learning methods allows for fast

» Label assignment based on a set of features related to the generation of plausible "healthy" detector states
statistical parameters of a run » Comparing real detector outputs with synthetic "healthy" indicates

. . » PYTHIAG Perugia-0, pp © /s =7 TeV with full detector response
determines anomalies

ClaSSificatiOn metthS » Selection of charged hadrons — pions, kaons, protons
» Signals from the TPC and TOF detectors used

Evaluated generative models

Evaluated machine learning methods for quality label assessment:

» Random Forest + ADABoost - Adaptive ensemble classifier . Generative Aversarial Networks (GAN) C|aSS|flcathn method

based ofn decision trees, predicting the class which was chosen with - Multi Layered Perceptron (MLP) GAN Traditional PID:
most of components. > Long Short Term Memory(LSTM) GAN
. . - . . . . » 0.2<pr<0.5 GeV/c - TPConly, N <2

» Support Vector Machine - non linear classifier, which tries to maximize ~ Deep Convolutional GAN (DCGAN) Pr / Ky QU’TPCK 5

the possible distance from decision boundary to any data samples. ~ Variational Autoencoder (VAE) » pr>0.5-TPCand TOF, \/Na,TPc + Nyror <2
» Naive Bayes Classifier - basic classification algorithm deriving straight » Standard Variational Autoencoder Machine learning-based PID:

_ » Convolutional Autoencoder -
from Bayesian theorem. » Random Forest classifier

To reduce visible aliasing, we implement a progressive training method

» Probabilistic neural networks - a Rosenblatt's perceptron which is
trained to predict the probability of given sample belonging to each for DCGAN model. Exem p|a r results
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» Over 1400 runs i

» Recorded by ALICE between January 2016 and July 2017 Figure 1. Architecture of the network for progressive training 0g

» 250 numerical attributes — statistical descriptions from trending.root > '

» Ground truth: samples manually annotated by experts with one of Exem Ia r resu ItS e
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Figure b: Efficiency of charged kaon selection by traditional and ML-based PID.
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» The goal: reduction of a false positive rate
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» data preprocessing: outliers removal, PCA dimensionality reduction

» automatic hyperparameter optimization
» adaptive boosting

» k-fold cross validation Figure 6: Purity of charged kaon selection by traditional and ML-based PID.
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_ Conclusions
Conclusions

» Random Forest surpasses traditional PID

' » Proof of concept work showing promising results . Hi ' - - -
COnCI usions e P & Pr & | | High purity sample can be selected with very high efficiency
» Significant speed-up w.r.t. traditional detector simulation

» Automation of particle selection process — no "trial and error"

Figure 8: ROC curve for Random Forest classifier.
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» A Random Forest with adaptive boosting significantly ~ Needs more tuning to get physical results attempts
outperforms other methods across all use cases » Close cooperation with the CERN group developing GANs for EM » Significantly lowered systematic uncertainties due to PID
» It allows to assign the quality label in 75% of the cases with calorimeters » Quality of final classification more vulnerable to discrepancy between
over 95% accuracy » Mutual benefits for the HEP and ML fields Monte Carlo generated and real data
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