

News from the Micro Vertex Detector of CBM

Philipp Sitzmann¹ for the CBM-MVD Collaboration²

¹ Goethe Universität Frankfurt, Germany ²Goethe Universität Frankfurt, Germany / Pusan National University (PNU), Korea / IPHC Strasbourg, France

The Micro Vertex Detector (MVD) of CBM

The task of the MVD) of CBM

1) Open Charm reconstruction \rightarrow Provide ~50 µm sec. vertex reconstruction. 2) Support e⁺/e⁻ spectroscopy \rightarrow Provide excellent low momentum tracking. 3) Charged reconstruction in HIC (first time) Operate at 100 kHz Au+Au (10 AGeV) and 10 MHz p+Au (30 GeV)

The technological challenge

Average Hit-Density, Au-Au 10 AGeV **Delta electrons from target**

- Needs ultra thin $(0.3\% X_0)$ stations.
- Operation in target vacuum needed.
- High track density (700 kHz/mm² peak)
- High radiation load:
 - $-3 \times 10^{13} \text{ n}_{eq}/\text{cm}^2$
 - 3 Mrad

The sensor technology

CMOS Monolytic Active Pixel Sensor

- Excellent compromise between high precision tracking and high rate capability.
- Used in STAR/HFT and ALICE/ITS (upgrade).
- Dedicated sensor required for CBM (MimoSIS):

	ALICE ALPIDE (demonstrated)	MimoSIS (design goal)	Improvement factor
Pixel count	512 x 1024	504 x 1024	ok
Pixel pitch	29.2 µm x 26.9 µm	30.2 µm x 26.8 µm	ok
Spacial resolution	< 5 µm	< 5 µm	ok
Time resolution	5 - 10 µs	~5 µs	ok
Radiation load TID	500 krad	3 Mrad	x 6
Radiation load NIEL	1.7 x 10 ¹³ n _{eq} /cm ²	3 x 10 ¹³ n _{eq} /cm ²	x 2
Peak hit rate	> 12 kHz/mm ²	700 kHz/mm ²	x 56

Results of prototyping

Tracking performance simulations

()

(1)

Conclusion: Both geometries provide robust performances. Full physics case simulation Next step:

Bundesministerium für Bildung und Forschung

Helmholtz International Center