

Time-based particle reconstruction and event selection in the CBM experiment

Valentina Akishina¹, Iouri Vassiliev², Ivan Kisel^{1,2,3}, Maksym Zyzak² ¹ Frankfurt University, Germany, ² GSI, Darmstadt, Germany, ³ FIAS, Frankfurt, Germany (for the CBM Collaboration)

Novel Data-processing Concept of CBM

- CBM is the future fixed-target heavy-ion experiment at FAIR.
- Observables include extremely rare probes (e.g. one $\overline{\Omega}^+$ per 10⁶ collisions).
- Unprecedented rates of 10⁵-10⁷ collisions per second with up to 1000 charged particles are required for sufficient statistics in measurements.
- Observables have complex signatures, no simple hardware triggers.

time-slice instead of isolated collisions

- Free streaming data.
- Continuous time-slices instead of individual collisions.
- On-line time-based collision reconstruction and selection is required in the first trigger level.
- Cellular Automaton track finder for track search in the Silicon Tracking System (STS).
- Kalman filter based track fitter for track parameters estimation.
- Event Finder based on the obtained set of tracks.
- KF Particle Finder for short-lived particles reconstruction and physics analysis.
- Module for a quality check.

Rare probe measurements require novel data-processing concept.

First Level Event Selection Package (FLES)

All tracks	92.5	93.8	91.7
Ghost level	1.8	0.6	0.6
Time, ms/ev	11.70	11.97	13.60
· · ·			

- time-based performance comparable with event-based analysis;
- 4D tracking is able to recover speed and efficiencies of event-based analysis.
- unbiased track parameters with a high resolution;
- correctly estimated errors;
- strong scalability on various computer systems;
- tracks are split into collision-corresponding groups based on the evaluated time;
- adding all sub-detectors information is in progress;

Parallel and SIMD-ised algorithm allows for timeslice-based reconstruction

Strange Particle Reconstruction in Time-slices

KF Particle Finder

- short-lived particles are of particular physics interest;
- particles are reconstructed via decay products;
- events from event finder serve as input for KF Particle Finder;
- time-based reconstruction performance is comparable to the event-based procedure;
- Monte-Carlo particle identification is currently used;
- work in progress: multi-vertex analysis and all detector sub-systems.

Conclusions

300k mbias AuAu 10 AGeV events at 10 MHz, MC PID

Case	3D	10 MHz
K ⁰ s, %	22.9	21.2
Λ, %	21.9	19.6
Ξ⁻, %	7.8	6.3

- The FLES package is efficient, fast and is highly parallelized both on the data \bullet and task levels.
- The reconstruction chain of CBM is being developed capable of the freelacksquarestreaming data processing.
- It allows to reconstruct individual events out of continuous time-stamped data.
- Reconstructed individual collisions serve as an input for the high-level physics analysis.
- The performance of time-based chain is comparable with event-based analysis.

4D reconstruction performance shows that results of event-based feasability studies are valid.

