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1) Intoroduction

Thermalization process in heave ion collisions
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Classical Yang-Mills(CYM) field

Weibel instability Weibel (1959), Romatschake and Venugopalan (2006)
Nielsen-Olesen instability Neilsen and Olsen (1978), Fuijii et al. (2009)

parametric instability Tsutsui et al. (2015)

‘ Pressure isotropization

Romatschake and Venugopalan (2006), Epelbaum and Gelis (2013)
Content

We study the thermalization of CYM fields by calculating
entropy production
*relaxation to equipartition

+pressure isotropization

(@ Method
EOM for CYM field
We calculate 0pA; (x) = aansz)' Ok (x) = aAEZ‘H(x)

in (t,x,y,z) coordinate static box(=Non-expanding geometry).

MV like initial condition and fluctuations

[IVIcLerran and Venugopalan (1994)]

The initial configuration mimicking MV model in the static box
Tsukiji, Kunihiro, Ohnishi et al. (2017)
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+fluctuation respecting gauss law
A trigger of instability

Amv, Emv — Awmv, Emv + OE
Romatschke and Venugopalan (2006)

We can control the size of fluctuations by changing the size of A
A=(0Q = OSLE=0
A =large = OF =large

Method for estimating entropy, assuming docoherence

Regard the classical state as the coherent state E(X,t)]
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- Assume that the phase coherence became lost in \aCYM (t))(decoherence)
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" Define the von-Neumann entropy by using pgec

Sdec = —Tr(pgecIn pgec) (Decoherence entropy)

@) Numerical result
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Il. Equipartition

In classical equilibrium system,

(equipartition theorem)

(|E%(I)|?) =

1000
g“ut = 0.0~10.0( )
A | : (IE‘”'(I?)IZ) approach “T” rapidly
N§ 107 g°ut =10.0~ )
% 1 - (|[E® (k)|?) approach “T” slowly
0.01 !
O 05 1 15 2 25 3
W A=0.6
Ill. Pressure

Rapid isotropization(g?ut = —10.0)
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From / and I, entropy production
and relaxation to equipartition have
same time scale.

And we find that pressure
isotropization has same time scale,
too.
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4 Summery

We have studied the thermalization process, focusing on decoherence.
We have considered coherent state that correspond to CYM fields .

We discuss the thermalization by using
“"entropy production”, “relaxation to equipartition”, “pressure isotropization”.

=) tWO time scale

-Shorter time scale(g?ut = 10.0 — 20.0)
We fine that entropy production, relaxation to equipartition and pressure
isotropization proceed rapidly.

‘ Hydronization?(Incomplete thermalization)

Longer time scale
We fine that entropy production and relaxation to equipartition proceed slowly.

‘ Complete thermalization




