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Collision QGPDecoherence process
Glasma Particle system

Coherent
 𝐴 ≠ 0

Incoherent
 𝐴 ~0

Thermalization process in heave ion collisions

Glasma initial condition
EOM for CYM field

・Weibel instability Weibel (1959), Romatschake and Venugopalan (2006)

・Nielsen-Olesen instability Neilsen and Olsen (1978) , Fujii et al. (2009) 

・parametric instability Tsutsui et al. (2015)

Pressure isotropization
Romatschake and Venugopalan (2006), Epelbaum and Gelis (2013)

≃ Classical Yang-Mills(CYM) field
Glasma

We study the thermalization of CYM fields by calculating
・entropy production
・relaxation to equipartition

Content

Method for estimating entropy, assuming docoherence

at   𝑡 = 0+

𝐴0 = 0

𝐴MV,𝜇 = 𝛿𝜇1𝐴MV,1 + 𝛿𝜇2𝐴MV,2

𝐸MV,𝑖 = 𝛿𝑖3𝐸MV

𝐵MV,𝑖 = 𝛿𝑖3𝐵MV

The initial configuration mimicking MV model in the static box

McLerran and Venugopalan (1994)
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＋fluctuation respecting gauss law

We can control the size of fluctuations by changing  the size of Δ

Romatschke and Venugopalan (2006)

𝛿𝐸 = 0Δ = 0
𝛿𝐸 =largeΔ =large

Tsukiji, Kunihiro, Ohnishi et al. (2017)

𝐴MV , 𝐸MV ⟶ 𝐴MV, 𝐸MV + 𝛿𝐸
A trigger of instability

MV like initial condition and fluctuations

EOM for CYM field
We calculate          𝜕0𝐴𝑖

𝑎 𝑥 =
𝜕𝐻

𝜕𝐸𝑖
𝑎(𝑥)

, 𝜕0𝐸𝑖
𝑎 𝑥 = −

𝜕𝐻

𝜕𝐴𝑖
𝑎 (𝑥)

in (t,x,y,z) coordinate static box(=Non-expanding geometry).

𝑆dec ≡ −Tr(𝜌dec ln 𝜌dec) (Decoherence entropy)

・number of sites : 64 × 64 × 64
・SU(2) Yang-Mills theory
・g2𝜇a = 2

In classical equilibrium system, |𝐸𝑎𝑖(𝑘)|2 = 𝑇 .     (equipartition theorem)

＊𝑇 ∼ 0.62

𝑔2𝜇𝑡 = 0.0~10.0(            )

: |𝐸𝑎𝑖(𝑘)|2 approach “T” rapidly 

Ⅱ. Equipartition

Δ = 0.6

𝑔2𝜇𝑡 = 10.0~ (            )

: |𝐸𝑎𝑖(𝑘)|2 approach “T” slowly

・Shorter time scale(𝑔2𝜇𝑡 = 10.0 − 20.0)

We fine that entropy production, relaxation to equipartition and pressure 
isotropization proceed rapidly. 

・Longer time scale
We fine that entropy production and relaxation to equipartition proceed slowly.

Hydronization?(Incomplete thermalization)

・We have studied the thermalization process , focusing on decoherence.

・We have considered coherent state that correspond to CYM fields .

・We discuss the thermalization by using 
”entropy production”, “relaxation to equipartition”, “pressure isotropization”.

two time scale

temporal gauge

In the glasma,  the expectation value of a gluon 

decoherence and decay into incoherent particle 

So, the glasma is described well by  the classical 

This CYM field is anisotropic,and the anisotropy 

In addition, to compare with those, we calculate 

+pressure isotropization

Entropy doesn’t increase Entropy increases rapidly

Ⅰ. Decohrence entropy

Entropy increases slowly

Entroy never increases(Δ = 0)

Ⅲ. Pressure

FromⅠ andⅡ , entropy production
and relaxation to equipartition have
same time scale.
And we find that pressure 
isotropization has  same time scale,
too.

Rapid isotropization(𝑔2𝜇𝑡 = −10.0)

𝑃𝑇/𝜀

𝑃𝐿/𝜀

Complete thermalization

|  𝛼CYM 𝑡 =  
𝑎,𝑖,𝑘

 𝑛 𝐶𝑛
𝑎,𝑖,𝑘|  𝑛(𝑎, 𝑖, 𝑘)

𝐴𝑖
𝑎(  𝑥, 𝑡) = 𝛼CYM(𝑡)  𝐴𝑖

𝑎  𝑥 𝛼CYM(𝑡)

𝐸𝑖
𝑎(  𝑥, 𝑡) = 𝛼CYM(𝑡)  𝐸𝑖

𝑎  𝑥 𝛼CYM(𝑡)

⋯ , 𝐴𝑖
𝑎 (  𝑥, 𝑡), ⋯ , 𝐸𝑎𝑖(  𝑥, 𝑡), ⋯

𝐴(  𝑥, 𝑡)

𝐸(  𝑥, 𝑡)

0

𝐴(  𝑥, 𝑡)

𝐸(  𝑥, 𝑡)

0
Δ𝐴 (  𝑥, 𝑡)

Δ𝐸 (  𝑥, 𝑡)

・Regard the classical state as the coherent state

𝜌CYM =  𝛼CYM 𝑡  𝛼CYM 𝑡 =  
𝑎,𝑖,𝑘

 𝑚,𝑛 𝐶𝑚
𝑎,𝑖,𝑘 𝐶𝑛

𝑎,𝑖,𝑘
∗

|  𝑚(𝑎, 𝑖, 𝑘)  𝑛(𝑎, 𝑖, 𝑘)|

𝜌dec =  
𝑎,𝑖,𝑘

 𝑛 𝐶𝑛
𝑎,𝑖,𝑘
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|  𝑛(𝑎, 𝑖, 𝑘)  𝑛(𝑎, 𝑖, 𝑘)| 𝐶𝑛
𝑎,𝑖,𝑘

2

: Particle number distributon

・Assume that the phase coherence became lost in |  𝛼CYM 𝑡 (decoherence)

・Define the von-Neumann entropy by using 𝜌dec


