Quark Matter 2018

Contribution ID: 459

Type: Poster

Corona effect in AA collisions at LHC and RHIC

Tuesday 15 May 2018 19:10 (30 minutes)

Following our earlier finding based on RHIC data about the dominant jet production from nucleus corona region, we reconsider this effect in nucleus-nucleus collisions at LHC energy. Our hypothesis was based on the experimental data, which raised the idea of a finite formation time for the produced medium. At RHIC energy and in low density corona region this time reaches about 2° fm/c. In the center of interaction region it's about 0.7 fm/c. All observed high p_t particles are produced in the corona region and have a chance to escape during this 2⁻fm/c. After that, the formed high density matter absorbs all jets. Following this hypothesis, the nuclear modification factor R_{AA} should be independent on particle momentum and be flat versus p_t . At the same time, we can describe at RHIC the finite azimuthal anisotropy of high p_t particles, v_2 . A separate prediction held that, at LHC energy, the formation time in the corona region should be two times smaller, about 1^{-fm/c}. New data at LHC show that R_{AA} is not flat and is rising with p_t . We add to our original hypothesis an assumption that a fast parton traversing the produced medium loses the fixed portion of its energy. A shift of about 7 GeV from the original power law p^{-6} production cross section in pp explains well all the observed R_{AA} dependencies at all centrality. The shift of about 7 GeV is also valid at RHIC energy, where the cross section follows a power law with about p^{-8} and this shift explains a very slow rise of R_{AA} seen for neutral pions with p_t above 15⁻GeV/c. We also show that the observed at LHC dependence of v_2 at high p_t and our previous predictions agree. It is very attractive to call this value of 7 GeV as a parton binding energy.

Content type

Experiment

Collaboration

Centralised submission by Collaboration

Presenter name already specified

Primary author: Dr PANTUEV, Vladislav (INR, RAS)

Presenter: Dr PANTUEV, Vladislav (INR, RAS)

Session Classification: Poster Session

Track Classification: Jet modifications and high-pT hadrons