

(Multi-)strange particle production in jets and underlying events in pp collisions at \sqrt{s} =13 TeV

Pengyao Cui for the ALICE Collaboration
Institute of Particle Physics, CCNU, Wuhan, China
Email: pengyao.cui@cern.ch

Motivation

 Production of multi-strange particles increase with multiplicity^[1]

- V⁰s production in jets and UE has been measured in various collision systems^[2]
 - > p-Pb at 5.02 TeV: To understand the origin of flow-like correlations at high multiplicity in small systems
- ➤ pp at 7 TeV and Pb-Pb at 2.76 TeV: investigation of medium modified jet fragmentation (using V⁰s as the probes) and potential medium-excitation

- This analysis: V⁰ and Ξ[±] production in pp at 13 TeV with ALICE LHC RUN-II data
 - > Improved precision as compared to 7 TeV result
 - Further constrain on particle production mechanism in jets and UE by extending the study to multi-strange particle sector
 - \triangleright Constraint on feed-down estimation of $\Lambda(\overline{\Lambda})$ in jets
 - ➤ New insight to strange baryon and meson production and its interplay with the hardness of the event

Analysis strategy

- Tag the hard scattering with charged particle jets^[3] • $p_T^{\text{jet}} > 10 \text{ GeV/}c$
 - \triangleright Anti- $k_{\rm T}$ method and R = 0.4
- Reconstruct V^0 s $(\Lambda, \overline{\Lambda} \text{ and } K_S^0)$ and $\Xi (\Xi^- \text{ and } \overline{\Xi}^+)$ within the "jet region"
 - $> R(V^0/\Xi, jet) < R_{match} (R_{match} = 0.4)$
- Underlying Events estimator: reconstruct V⁰s and E within the UE region
 - > PC : perpendicular cone
 - $ightharpoonup OC : R(V^0/\Xi, jet) > R_{cut} (R_{cut} = 0.6)$
- > NJ : events w/o jet in $p_{\rm T}^{\rm jet} < 5 \ {\rm GeV}/c$

Normalization

$$\frac{d\rho}{dp_{\rm T}} = \frac{1}{N_{ev}} \times \frac{1}{\langle \text{Area} \rangle} \times dN/dp_{\rm T}$$

- Efficiency correction
- Feed-down correction (for $\Lambda(\overline{\Lambda})$)
 - \triangleright Scaled MC according to the measured Ξ spectrum in jets in data

$$\Lambda_{\text{JE}}^{\text{prim}} = \Lambda_{\text{JC-UE}}^{\text{corr}} - \sum_{i} F_{ij} \int_{p_{\text{T}}(\text{bin})} \frac{dN}{dp_{\text{T}}} (\Xi) \left(F_{ij} = \frac{N_{\text{gen}}(\Lambda)_{\text{from }\Xi \text{ bin }j}^{\text{in bin }i}}{N_{\text{gen}}(\Xi)_{\Xi \text{ bin }j}} \right)$$

Results

Strangeness spectra in jets and the UE

- The production density of strangeness in jets is harder than that in underlying events
- The UE is harder than inclusive distribution the presence of a jet biases UE

The ratios in jets and the UE

- The Λ/K_S^0 enhancement may be attributed to the soft component of the collision
- Inclusive and UE Ξ/Λ has an enhancement at intermediate p_T region
- Ξ/Λ is almost p_T independent in JE

Conclusion

- Production of V^0 s (K_S^0 and Λ) and Ξ has been investigated in jets and the UE in pp collisions at 13 TeV
- The first look at $\Xi^-(\overline{\Xi}^+)$ production and the Ξ/Λ ratio in jet and the UE in pp collisions with ALICE
- Baryon to meson enhancement not present when the particles are in coincidence with a jet

Outlook

• Study (multi-)strange particle production in jets and UE in high multiplicity pp and p-Pb collisions

Reference

- [1] Adam, Jaroslavet al. (ALICE Collaboration) Nature Phys. 13 (2017) 535-539.
- [2] X. Zhang (ALICE Collaboration) Nucl. Phys. A931 (2014) 444-448.
- [3] S. K. Prasad (ALICE Collaboration)
 J. Phys. Conf. Ser. 389 (2012) 012005.

