Measurement of azimuthal correlations of D mesons with charged particles in pp

 collisions at V = 13 TeV with ALICE at the LHC
Samrangy Sadhu on behalf of the ALICE collaboration

Introduction and Physics motivation

Due to their large masses, heavy quarks (charm and beauty) are produced in parton-parton hard scatterings in the early stages of ultra-relativistic heavy-ion collisions before the formation of QuarkGluon Plasma (QGP). So, they experience the full evolution of the medium, interact with its constituents and lose energy via both collisional and radiative processes $[1,2]$

The study of angular correlations between heavy-flavour particles and charged particles in pp collisions allows us to: - Characterize charm-quark jets and study their properties - Retrieve information on the different charm production mechanisms.
Provide a reference for $\mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions.

Features of correlations using heavy-flavour particles

- "Trigger" particle defined by its identity and not by a p_{T} threshold
- Harder fragmentation of charm quark -> closer to parton kinematics.

Experimental setup

The ALICE detectors used in this analysis are: Inner Tracking System (ITS)

Vertex and track reconstruction
Time Projection Chamber (TPC)
Track reconstruction and particle identification via $\mathrm{d} E / \mathrm{d} x$
Time-of-Flight (TOF) Particle identification
V0 (scintillator array) Event trigger

Analysis strategy

- D-meson signal extraction:

Reconstruction of D mesons ($\mathrm{D}^{0}, \mathrm{D}^{+}, \mathrm{D}^{*+}$ and their charge conjugates) is done via their hadronic decay channels $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}$(BR of $3.89 \pm 0.04 \%$), $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}(\mathrm{BR}$ of $8.98 \pm 0.28 \%)$, $D^{*+} \rightarrow D^{0} \pi^{+}$(BR of $67.7 \pm 0.5 \%$)
The selection of D-meson candidates is based on the reconstruction of displaced secondary vertices and particle identification on the daughter tracks [3].

- Azimuthal correlations:

Each D-meson (both signal and background) is correlated with all charged particles of the same event.
The correlations are built in different D meson p_{T} intervals, i.e. 3-5, 5-8, 8-16 GeV/c.
Background subtraction and corrections:
\checkmark The $(\Delta \eta, \Delta \varphi)$ azimuthal correlation distribution in the sideband region is used to subtract the correlations from D-meson combinatorial background.
-The correlation distributions are corrected for limited detector acceptance and spatial inhomogeneities using mixed event technique
-The correlation distributions are corrected for trigger and associated track efficiencies.
-Correlation distributions are normalized by the number of D-meson triggers and corrected for the contamination of secondary particles in the charged-particle sample.
\checkmark The contribution of D mesons originated from B-hadron decays is removed through a feed-down correction [3].

- Averaging and fitting:
-Projection of $(\Delta \eta, \Delta \varphi)$ correlation distribution along $\Delta \varphi$ axis to reduce statistical fluctuations
\checkmark Weighted average of $\mathrm{D}^{0}, \mathrm{D}^{+}, \mathrm{D}^{*+}$ distributions.
\checkmark Fitting of fully-corrected correlation distributions with two Gaussian functions (describing near-side and away-side peaks) and a constant term for baseline.
- Extraction of physical observables (peak yields, widths and baseline heights) from these fits.

Results

Comparison of $\Delta \varphi$ distribution

in pp and $\mathrm{p}-\mathrm{Pb}$ collisions

$p p, ~ v s=13 \mathrm{TeV}$
$\mathrm{pp}, \mathrm{Vs}=7 \mathrm{TeV}$
$\mathrm{p}-\mathrm{Pb}, \mathrm{V} s_{\mathrm{NN}}=5.02 \mathrm{TeV}$

- Average of the results from three D-mesons species (D^{0} and D^{*+} only for $p p \mathrm{vs}=13 \mathrm{TeV}$), weighted with statistical and uncorrelated systematic uncertainties. The comparison of the results is performed after subtraction of the baseline.
Compatibility within uncertainty is found for all the kinematic ranges.

Comparison of $\Delta \varphi$ distribution with Monte Carlo predictions

pp Vs = $\mathbf{1 3}$ TeV
Comparison with:
PYTHIA6 tunes Perugia 0,
201, Perugia 2011
PYTHIA8
POWHEG+PYTHIA6 [4,5]

- The comparison of results is performed after baseline subtraction.
The shape of the correlation distributions and the evolution of correlation peaks are well reproduced by the generators for all the kinematic ranges. In the near side the data is well reproduced by models. In the away side POWHEG+PYTHIA6 and PYTHIA8 are closer to the data

Comparison of near-side peak yields

and widths in pp and $\mathrm{p}-\mathrm{Pb}$ collisions

Summary and outlook

- The baseline-subtracted azimuthal correlation distributions measured in pp collisions at $\mathrm{V} s=7 \mathrm{TeV}, 13 \mathrm{TeV}$ and $\mathrm{p}-\mathrm{Pb}$ collisions at $\mathrm{V} s_{\mathrm{NN}}=5.02 \mathrm{TeV}$ are compatible within uncertainties
- The near-side peak yields and widths are also compatible for all energies and collision systems within uncertainties.
- The measured azimuthal distributions, as well as the properties of the correlation peaks, are qualitatively reproduced by PYTHIA and POWHEG+PYTHIA event generators.
- The addition of one more D-meson (D^{+}) and more statistics from 2017 data samples will increase the precision of the measurement for pp collisions at $\mathrm{V} s=13 \mathrm{TeV}$.

References

[1] Yu.L. Dokshitzer, D.E. Kharzeev, Physics Letters B 519 (2001) 199-206.
[2] R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D. Schiff, Nucl. Phys. B 484, (1997) 265.
[3] B. Abelev et al. (ALICE Collaboration), JHEP 01 (2012) 128
[4] P. Z. Skands, "Tuning Monte Carlo Generators: The Perugia Tunes", Phys. Rev. D82 (2010) 074018.
[5] T. Sjostrand, S. Mrenna, and P. Z. Skands, "A Brief Introduction to PYTHIA 8.1", Comput. Phys. Commun. 178 (2008) 852867.

