D⁰-meson tagged jets in pp collisions at $\sqrt{s} = 7$ TeV with ALICE

Salvatore Aiola, on behalf of the ALICE Collaboration

Yale University salvatore.aiola@yale.edu

Introduction

Critical experimental input to:

- gluon PDFs at **small** \boldsymbol{x}
- transport properties of the Quark-Gluon Plasma
- fragmentation • parton-to-hadron functions, particularly $g \rightarrow D$

Figure 1: Momentum fraction z_h carried by $D^{*\pm}$ mesons in jets measured by ATLAS compared with a global QCD fit and an older calculation using only single-hadron data [1].

7—ALICE Preliminary

pp, $\sqrt{s} = 7 \text{ TeV}$

ALICE at the LHC

cays: $D^0 \rightarrow K^- \pi^+$ [2] -Particle Identification (K/π)

- -Displaced decay topology -Invariant mass analysis
- Tracking down to low momentum: $p_{\rm T} \gtrsim 0.1~{\rm GeV}/c$

 \bullet **D⁰** mesons reconstructed via hadronic de-

• Track-based jets reconstruction with the anti- $k_{\rm T}$ algorithm [3]

Figure 2: 3D schematics of the ALICE detector.

p_{T} -Differential Cross Section and Momentum Fraction Distributions

Charged Jets, Anti- $k_{\rm T}$, R=0.4, $|\eta_{\rm iet}|<0.5$

 $5 = 5 < p_{T, \text{ch jet}} < 15 \text{ GeV/}c$ • Data

 $z_{||,\mathrm{D}}^{\mathrm{ch}\,\mathrm{jet}} = rac{m{ec{p}}_{\mathrm{ch}\,\mathrm{jet}}m{\cdot}m{ec{p}}_{\mathrm{D}}}{m{ec{p}}_{\mathrm{ch}\,\mathrm{jet}}m{\cdot}m{ec{p}}_{\mathrm{ch}\,\mathrm{jet}}}
ightarrow$

• Data systematic uncertainty dominated by extraction of raw yield (invariant mass fit) and non-prompt subtraction • Theory systematic uncertainty: renormalization and factorization scales, charm mass, PDFs

Overall the data is in good agreement with POWHEG (NLO parton event) + PYTHIA6 (parton shower and hadronization), with possibly a hint of a softer fragmentation in the $15 < p_{T,ch jet} < 30 \text{ GeV}/c$ kinematic range

Raw Signal Extraction

Figure 5: Invariant mass distributions (top) and $p_{T,ch jet}$ distributions (bottom) from the peak region and the side bands (SBs).

- ullet The normalized **side-band** distributions in $p_{\mathrm{T,ch\,jet}}$ and $z_{\mathrm{ILD}}^{\mathrm{ch\,jet}}$ are subtracted from **peak-region** ones
- The subtracted distributions are weighted by the inverse of the reconstruction efficiency $\epsilon_{p_{\mathrm{T,D}}}$ and summed over $p_{\mathrm{T,D}}$

$$N(p_{\mathrm{T,ch\, jet}}) = \sum_{p_{\mathrm{T,D}}} rac{1}{\epsilon_{p_{\mathrm{T,D}}}} \cdot [N_{\mathrm{P}}(p_{\mathrm{T,D}}, p_{\mathrm{T,ch\, jet}}) - B'N_{\mathrm{SB}}(p_{\mathrm{T,D}}, p_{\mathrm{T,ch\, jet}})]$$

Corrections

Strong dependence of the **re**construction efficiency on the D^0 momentum $p_{T,D}$:

- Affected by **tracking effi**ciency and displaced decay topology cuts
- Weak or no dependence on $p_{
 m T, ch\, jet}$ or $z_{
 m ||,D}^{
 m ch\, jet}$
- Higher efficiency for nonprompt (b \rightarrow D⁰) vs. prompt $(c, g \rightarrow D^0)$
- Non-prompt $\approx 15\%$, subtracted based on POWHEG expectations folded with detector effects

Figure 7: $z_{\parallel,D}^{\text{ch jet}}$ resolution.

 $_{16}$ $\stackrel{\square}{=}$ with $D^0 \rightarrow K^{\bar{}}\pi^+$ and c.c.

 $p_{TD} > 6 \text{ GeV/}c$

 $0.6 < Z_{\parallel D}^{\text{part}} < 0.8$

 $0.8 < Z_{\parallel,D}^{\text{part}} < 1.0$

Unfolding with the regularized SVD method:

0.1 0.2 0.3 0.4 0.5 0.6 $(z_{\parallel,D}^{\text{det}} - z_{\parallel,D}^{\text{part}}) / z_{\parallel,D}^{\text{part}}$

 $5 < p_{T, ch jet}^{part} < 15 \text{ GeV}/c$

p_{T.D} > 2 GeV/c

 $0.2 < z_{\parallel,D}^{\text{part}} < 0.4$

 $-0.6 < Z_{\parallel D}^{part} < 0.8$

• $0.8 < Z_{\parallel D}^{\text{part}} < 1.0$

- Resolution: $\sigma(z_{\text{II.D}}^{\text{ch jet}}) \approx 15\%$, $\sigma(p_{\text{T,ch jet}}) \approx 11\%$
- Detector response simulated with PYTHIA6+GEANT3

Outlook

- ALICE has measured the **cross section** and the **fragmentation function** of D^0 mesons in jets with $5 < p_{T,chjet} < 30 \text{ GeV}/c$ in pp collisions at $\sqrt{s} = 7 \text{ TeV}$
- POWHEG+PYTHIA6 is in **agreement** with the data
- Comparisons with other models and calculations are under way
- Plans to extend this measurement to the larger data samples at $\sqrt{s} = 8$ and 13 TeV, possibly using electromagnetic calorimeters for triggering and full jet reconstruction
- Similar measurements are being pursued in p–Pb and Pb–Pb collisions to explore **QGP** effects on the charm production
- [1] D. P. Anderle et al., PRD 96 (2017) 034028.
- [2] S. Acharya et al. (ALICE), EPJC 77 (2017) 550.
- [3] B. Abelev et al. (ALICE), PRD 91 (2015) 112012.