Probing beauty and charm production in p-Pb collisions

with high p_T electrons measured with ALICE

Daichi Kawana for the ALICE Collaboration University of Tsukuba, TCHoU

OITCF

Motivation

- Heavy quarks (charm and beauty) are produced in the initial hard partonic interactions in heavy-ion collisions.
- Ideal probe to study the properties of Quark-Gluon Plasma (QGP).
- Undergo energy loss in the hot and dense QCD midium.
- Study of heavy-flavour production
 - Semi-electronic decays (c,b \rightarrow e) with 10 % BR.
 - Charm component at low p_T , and beauty dominates at high p_T ($p_T > 5$ GeV/c).
 - Modification of heavy-flavour production in heavy-ion collisions can be studied via comparison with binary scaled pp collisions (nuclear modification factor: $R_{\rm AA}$).
 - Strong suppression of e^{HF} yield observed in Pb-Pb collisions^[1]. $1 \qquad \mathrm{d}N_{\mathrm{AA}}/\mathrm{d}p_{\mathrm{T}}$

 $T_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \frac{1}{{
m d}\sigma_{
m pp}/{
m d}p_{
m D}}$

Heavy-flavour production

in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

- Investigate Cold Nuclear Matter (CNM) effects
 - Shadowing, gluon saturation, k_T broadening...
 - R_{pPb} is compatible with unity: p-Pb collisions scale as binary collisions^[2].
- Possibility of QGP formation in small systems
 - Non-zero elliptic flow (v_2) of e^{HF} could imply the presence of collective motion in p-Pb collisions.
 - But no evidence of $R_{pPb} \neq 1$ up to $p_T = 20$ GeV/c. $\frac{2}{9}$

Study heavy–flavour production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16 \, \text{TeV}$

- Energy dependence of CNM effects?
- Possible final-state effects, i.e. energy loss at higher centre-of-mass energy?

 $3 < p_{_{\pm}} < 4 \text{ GeV}/c$

ALICE apparatus

 $\Delta \phi = 360^{\circ}, |\eta| < 0.9$

Particle tracking

Charged-particle PID

 $\Delta \phi = 360^{\circ}, |\eta| < 0.9$

Particle tracking

Vertex determination

Analysed Data set

Electron identification with ALICE

- TPC and EM-Calorimeter (EMCal) are used.
- Di-jet Calorimeter (DCal) started data taking in Run-2 period.
 - Expand acceptance of EMCal w.r.t. Run-1 analysis.
 - Performance for electrons is similar to EMCal.

EMCal L1 Gamma trigger

- Single shower trigger $(4 \times 4 \text{ tower window})$.
- Two thresholds on energy deposit (5.5 GeV and 8 GeV) in 8.16 TeV p-Pb runs.
- Powerful to increase the high- $p_{\rm T}$ reach of electron measurement.

Heavy-flavour electron identification

Electron identification

- Based on measured dE/dx, shower shape properties and E/p (TPC + EMCal + DCal).
- Hadron contamination is estimated using
 E/p distribution after dE/dx requirement,
 and normalized to the electron distribution.
 - ▷ Increase with p_T ~ 20 % at 12-14 GeV/c.

i. Background subtraction

- Background is statistically subtracted.
- Main background sources include electrons from photon conversions and Dalitz decays of neutral mesons (mainly from π^0 and η).
 - Reconstructed by invariant mass of e⁺e⁻ (unlike-sign) pairs.
 - Combinatorial background is removed by subtracting like-sign pairs.
- Background finding efficiency ~ 80 %.
- W-decay electrons is $\ll 1 \%$ at 12-14 GeV/c.

iii. Final e^{HF} spectrum

- Corrected for efficiency (tracking × acceptance × PID).
 - ▷ ~ 15 % at p_{T} > 5 GeV/c.

Heavy-flavour production in p-Pb collisions at $\sqrt{s_{ m NN}}=8.16$ TeV

pp reference

- p_T < 8 GeV/c : ALICE 7 TeV data^[3] (|y|<0.6, p_T < 4 GeV/c is updated w.r.t. publication)
- $p_T > 8 \text{ GeV/}c$: ATLAS 7 TeV data^[4] (|y|<2.0 excluding 1.37 < y < 1.52)
- > Energy scaling and rapidity scaling based on perturbative-QCD FONLL calculation ^[5].

Energy dependence of heavy-flavour production in p-Pb

- $\sigma_{\rm pPb}$ (8.16 TeV) / $\sigma_{\rm pPb}$ (5.02 TeV) is consistent with FONLL prediction.
- Indication of no significant energy dependence of CNM effects on heavy-flavour production.

Nuclear modification factor

- $R_{\rm pPb}$ is measured up to 14 GeV/c using Minimum bias and EMCal trigger data.
- $R_{\rm pPb}$ at 8.16 TeV similar to the one at 5.02 TeV and to $R_{\rm dAu}$ at 200 GeV^[6].
- No suppression of e^{HF} yield observed in p-Pb collisions.

Summary & Outlook

daichi.kawana@cern.ch

- Heavy-flavour decay electron $p_{\rm T}$ -differential cross section is measured up to 14 GeV/c in p-Pb collisions at $\sqrt{s_{
 m NN}}=8.16$ TeV.
- R_{pPb} at $\sqrt{s_{\rm NN}} = 8.16$ TeV is consistent with $R_{\rm pPb}$ at 5.02 TeV and $R_{\rm dAu}$ at 200 GeV. No suppression of e^{HF} yield observed.
- p_{T} -differential cross section at $\sqrt{s_{\text{NN}}} = 8.16$ TeV is compared with 5.02 TeV.
- Indication of no significant energy dependence of CNM effects on heavy-flavour production. Outlook: extend p_T range (lower p_T and higher p_T), study multiplicity dependence (Q_{pPb})

References

- [1] ALICE Collaboration, Physics Letters B 771 (2017) 467-481
- [2] ALICE Collaboration, Physics Letters B 754 (2016) 81-93[3] ALICE Collaboration, Physical Review D 86, 112007 (2012)
- [4] ATLAS Collaboration, Physics Letters B 707 (2012) 437-458
- [5] M. Cacciari, M. Greco, P. Nason, JHEP, 9805 (1998) 007
- [6] PHENIX Collaboration, Physical Review Letters 109, 242301 (2012)

