Measurements of heavy-flavour production via electrons in the relativistic heavy-ion collisions with ALICE

Shingo Sakai (University of Tsukuba) for the ALICE Collaboration

- Heavy quarks (charm and beauty) are produced primarily in the initial hard partonic interactions in heavy-ion collisions
- Propagate through and interact with the hot and dense QCD matter, i.e. Quark-Gluon Plasma (QGP) -> Ideal probe to investigate the QGP
 - Lose energy by interacting with the medium constituents
 - Radiative energy loss (Djordjevic. et. al., PLB 632 (2006) 81)
 - Gluon bremsstrahlung
 - Smaller energy loss for heavy quarks than for light quarks due to "dead cone" effect (Yu. L Dokshitzer, D. E. Kharzeev, PLB 519 (2001) 199)
 - Energy loss depends on the colour charge and is larger for gluons than for quarks
 - Collisional energy loss (A. Adil, I. Vitev, PLB 649 (2007) 139)
 - Energy loss via elastic scatterings

Heavy-flavour production in Pb-Pb collisions

- Heavy-flavour study via electrons
 - Branching ratio: ~10%
 - Charm contribution dominates at low p_T , and beauty contribution dominates at high p_T (~>5 GeV/c)
 - High p_T electrons (p_T >3 GeV/c) Identified with TPC + EMCal
 - Electrons from background, mainly from neutral meson decays and conversion, are identified by invariant mass of electron pairs

■ Strong suppression in 0-10% centrality class

- No suppression observed in p-Pb collisions at intermediate-high p_T
- R_{nPh} is consistent with unity: Cold Nuclear Matter effects are small
- Indicate significant energy loss of charm and beauty quarks

- Models reproduce resonably well the measured R_{AA} in different centrality class (0-10% and 30-50%)
 - Increase in suppression with higher collision centrality

- Theoretical calculations
 - pQCD-based energy loss models
 - Djordjevic, MC@sHQ+EPOS, WHDG, Vitev
 - Transport models:
 - BAMPS, Cao, TAMU, PHSD, POWLANG

BAMPS: J. Phys. G 38 (2011) 124152., *POWLANG*: Eur. Phys. J C 71 (2011) 1666, *UrQMD*: arXiv:1211.6912, J. Phys. Conf. Ser. 126 012032 2013, *TAMU*: Phys. Rev. C 86 (2012) 014909, *MMDG*: J. Phys. G 38, (2011), 124114, 4th. 4th. Phys. Rev. C 97 2009 044906, J. Phys. G 37 2010 034019, Cao, Gil, Basse: arXiv:1300.0617

Heavy-flavour jets reconstruction with electrons from charm and beauty decays

Jets from heavy flavours

- Address charm and beauty quark kinematics
 - Align additional information on energy loss mechanism and hadronisation
 - Spatial distribution and kinematic properties of the radiative energy
- Heavy-flavour jet reconstruction with electrons from charm and beauty decays
 - Reconstruct charged jets (FastJet algorigthm, Anti- k_T , R = 0.3)
 - Find electrons in reconstructed jets (Nelectron)
 - momentum matching between electron and track in the reconstructed jets
 - Subtract jets containing photonic electrons (N^{pho})

$$N_{raw}^{HF} = \sum_{p_{\tau}^{e}} \left(N^{electron}(p_{T}^{e}) - (\frac{1}{\varepsilon(p_{T}^{e})} - 1) N^{pho}(p_{T}^{e}) \right)$$

- lacktriangledown ϵ : photonic electron reconstruction efficiency
- Correct for reconstruction efficiency, unfold p_T spectrum for detector response and background fluctuations
- Remaining contributions to be subtracted
 - e ← W, residual hadron contamination

- Monte Carlo closure test performed comparing the simulated heavy-flavour jets (at particle level with reconstructed e ← HF) to the reconstructed and corrected ones after background subtraction and unfolding (at detector level)
- Two HF-jet spectra are in good agreement

■ Summary & Outlook

- Measure R_{AA} in different centrality classes in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
 - Strong suppression observed in central collisions
- Further study of heavy-flavour energy loss can be performed with jets containing heavy flavours
 - Possible reconstruction by tagging electrons from heavy-flavour decays

