

Measurements of D⁰ meson production in pp collisions with ALICE at the LHC

ALICE

Susanna Costanza, Nicolò Valle, for the ALICE collaboration

University and INFN Pavia

Motivation

Heavy quarks: charm and beauty

- Large masses: $\sim 1.3 \text{ GeV}/c^2$ (charm) and $\sim 4.5 \text{ GeV}/c^2 \diamondsuit$ (beauty).
- Produced in hard scattering processes between partons \Diamond in the initial stages of the hadronic collisions.
- They are efficient probes of the strongly interacting matter formed in high-energy heavy-ion collisions.

Theoretical approach at high energies

- Heavy-flavour production calculable with perturbative \Diamond QCD techniques.
- Cross section factorized in terms of partonic hard-scattering cross section, PDFs of the incoming hadrons and non-perturbative fragmentation functions \Diamond of the heavy quark to a given hadron species.
- The state of the art are calculations with NLO plus Next-to-Leading Log (FONLL,[1] GM-VFNS[2]) based on collinear factorization, and LO calculations in the $k_{\rm T}$ -factorization approach.^[3]

D⁰-meson cross section in pp collisions

- Provides a test of pQCD calculations.
- A probe to investigate gluons PDFs since cross section ratios at different energies and rapidities are less sensitive to the perturbative scale uncertainties.^[4]
- A reference for the study of effects induced by the hot medium created in nucleus-nucleus collisions and Cold Nuclear Matter effects in proton-nucleus collisions.

Analysis Strategy

- D⁰ reconstructed via the **decay channel** $D^0 \rightarrow K^-\pi^+$ (and charge conjugated), BR=3.93 \pm 0.04 %.^[5]
- Typical signal signature: presence of a displaced secondary vertex ($c\tau = 123 \mu m$).
- Particle identification (TOF and TPC) and topological cuts to reduce the combinatorial background.
- D⁰-meson raw yields extracted from fit to **invariant mass** spectra: Gaussian (signal) + exponential (background) functions.
- Efficiency × Acceptance evaluated using Monte Carlo simulations performed with PYTHIA6 (Perugia-2011 tune).
- **Feed-down D⁰** mesons (i.e. from decay of beauty hadrons) subtraction based on pQCD calculations (FONLL).[1]
- An analysis w/o decay-vertex reconstruction is also performed: the shape of the combinatorial background invariant mass distribution is studied with dedicated techniques ("track rotation, event mixing, like sign, side-band fit").
 - Compatible results with the standard approach in the common p_T interval.
 - Better precision for $p_T < 1 \text{ GeV/}c$.

The ALICE detector

Data samples

- pp, $\sqrt{s} = 5.02 \text{ TeV}$: $L_{\text{int}} = 19 \text{ nb}^{-1}$ (2017).
- pp, $\sqrt{s} = 7 \text{ TeV}$: $L_{\text{int}} = (6.0 \pm 0.2) \text{ nb}^{-1}$ (2010).
- pp, $\sqrt{s} = 8 \text{ TeV}$: $L_{\text{int}} = (1.9 \pm 0.1) \text{ nb}^{-1}$ (2012).
- pp, \sqrt{s} = 13 TeV: L_{int} =(3.3±0.2) nb⁻¹ (2016).

RESULTS

Invariant mass

distribution for

D⁰ candidates,

at $\sqrt{s} = 5$ TeV.

Acceptance × Efficiency in pp collisions for prompt and feed-down D⁰ mesons. In the left panel the efficiency for the analysis without decay vertex reconstruction is also shown.

- Increasing trend as a function of p_T .
- Acc × Eff generally larger for feed-down D mesons due to the larger displacement from the primary vertex with respect to the prompt D⁰.
- Significantly higher efficiency, identical for prompt and feed-down D⁰-mesons, for the analysis w/o decay-vertex reconstruction.

 p_T -differential cross section in pp collisions at $\sqrt{s} = 5.02 \text{ TeV}$ compared to the pQCD-based energy scaling of the 7 TeV cross section to 5 TeV.

D⁰-meson p_T -differential cross section in pp collisions at \sqrt{s} = 5.02 TeV, \sqrt{s} = 8 TeV and \sqrt{s} = 13 TeV in different p_T ranges. The comparison with FONLL^[1] perturbative QCD calculations is shown. The value in $0 < p_T < 1$ GeV/c at $\sqrt{s} = 5.02$ TeV is from the analysis without decay vertex.

- The top-left panel shows that the cross sections measured with and without reconstruction of the decay vertex are compatible.
- ♦ The experimental results lie on the upper part of the theoretical uncertainty band.

Ratios of p_T -differential **cross section** at different energies. FONLL^[1] calculations are shown in red.

 $p_{_{\!\scriptscriptstyle \perp}} \, (\text{GeV}/c)$

- Good agreement with pQCD calculations.
- [1] M. Cacciari et al, JHEP 10 (2012) 137
- [2] B. A. Kniehl et al, EPJ C72 (2012) 2082
- [3] R. Maciula et al, Phys. Rev. D87 no. 9 (2013) 094022
- [4] M. Cacciari et al, EPJ C75 (2015) 12
- [5] C. Patrignani et al., Chin. Phys. C 40, (2016) 100001