Measurement of $\frac{\Lambda_c^-}{\Lambda_c^+}$ ratio in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with the STAR experiment

Miroslav Simko for the STAR Collaboration
Nuclear Physics Institute of the Czech Academy of Sciences
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

Abstract

The yield ratios of strange anti-baryons to baryons have been measured in heavy-ion collisions and exhibit a trend that is getting closer to unity with increasing number of valence strange quarks. This ratio has, however, never been measured for charm baryons, and it is important to establish if they exhibit a similar amount of baryon-to-anti-baryon enhancement as strange baryons. Λ_c is the lightest baryon containing a charm quark and, as such, presents a unique probe to study the hadronization of charm quarks in the hot and dense QCD medium created in ultra-relativistic heavy-ion collisions. Λ_c has, however, an extremely short lifetime ($\tau \sim 60 \mu$m) which makes the reconstruction experimentally challenging. The Heavy Flavor Tracker, installed at the STAR experiment between the years 2014 – 2016, has shown a high efficiency and an unparalleled track-pointing resolution that can facilitate the Λ_c reconstruction in heavy-ion collisions. In this poster, we present the reconstruction of Λ_c baryons via hadronic decays and the studies on the measurement of the yield ratio of $\frac{\Lambda_c^-}{\Lambda_c^+}$ utilizing the high-statistics data samples of Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV recorded with the STAR experiment in 2014 and 2016.

Motivation

- Ratios of strange anti-baryons to baryons grow towards unity with increasing number of strange valence quarks in the baryon.
- This ratio has never been measured for charm baryons and anti-baryons in heavy-ion collisions.
- $\frac{\Lambda_c^-}{\Lambda_c^+}$ can bring important insights into the hadronization of charm quarks.

Solenoidal Tracker at RHIC: 2π acceptance in azimuth

- Time of Flight Detector: $\delta E/\delta x$ (Particle Identification)
- Time-Projection Chamber (TPC): Tracking dE/dx (PID)
- Heavy Flavor Tracker: SSD, IST, PXL

Figure 2: The STAR experiment and the main subdetectors used in the Λ_c analysis.

Figure 1: Ratios of anti-baryons to baryons [1].

Figure 3: DCA resolution in the transverse plane of identified tracks with the HFT [2].

- Short life time of χ_c = 60 μm.
- Three-body decay channel $\Lambda_c \rightarrow \pi^+K^-\pi^+$ used.
- Topological reconstruction thanks to the excellent tracking resolution of the HFT.
- Cut on topological variables optimized via the Toolkit for Multi-Variate Analysis (TMVA – [3]) package, using the Boosted-Decision Trees method.

Data-driven fast simulation:

- The Λ_c were decayed using the EvtGen simulator [4].
- HFT- and TOF—matching efficiencies were obtained from data.
- TPC efficiency was obtained from embedding of simulated tracks in real data.
- The positions of the daughter particles are smeared according to the DCA resolution extracted from data.
- Moments are smeared according to detector simulation.

Outlook: Efficiencies will be applied separately for Λ_c^- and Λ_c^+ to obtain the final $\frac{\Lambda_c^-}{\Lambda_c^+}$ ratio.

Acknowledgement

This work was also supported by the grants LG15001, LM2015054 and CZ.02.1.01/0.0/0.0/16_013/0001569 (Bohdanov National Laboratory - participation of the Czech Republic) of Ministry of Education, Youth and Sports of the Czech Republic.

References

The STAR Collaboration

Time-Projection Chamber (TPC):
Tracking dE/dx (PID)

$\delta E/\delta x$ (Particle Identification)

Figure 5: Λ_c invariant mass spectrum from 2014 and 2016 data. Red points are right-sign and blue points wrong-sign pK+ triplets.

Figure 6: Projection of the statistical uncertainty projection of the $\frac{\Lambda_c^-}{\Lambda_c^+}$ ratio using the high-statistics data samples of Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV recorded with the STAR experiment in 2014 and 2016.

Figure 7: Difference in the TOF-matching efficiency.

Figure 8: Difference in the TPC efficiency.

Figure 9: Difference in the HFT-matching efficiency.

Figure 10: Maximum daughter pair DCA from the data-driven fast simulation.

Figure 11: DCA between Λ_c and the primary vertex from the data-driven fast simulation.

Charge dependent reconstruction efficiency

- There is an observable charge dependence of detector efficiencies.

Figure 4: Topological reconstruction of the Λ_c secondary vertex.