Quark Matter

Production of electrons from heavy-flavour hadron decays in pp collisions at $\sqrt{s} = 13$ TeV as a function of charged-particle multiplicity with ALICE

Variable Energy Cyclotron Centre, India

Motivation

- High-multiplicity pp collisions at the LHC exhibit features resembling those seen in relativistic heavy-ion collisions^{[1],[2]} and point to the need for revisiting the prevailing models of the particle production mechanism in pp collisions.
- The study of the multiplicity dependence of heavy-flavour production in pp collisions provides insight into their production mechanism and into the interplay between hard and soft processes in particle production^[3].

Multiplicity estimation

- Multiplicity estimator Silicon Pixel Detector (SPD) tracklets within $|\eta| < 1 (N_{\rm tr})$
- \bullet The number of SPD tracklets ($|\eta|<\!\!1)$ depends on the Z vertex due to :
 - Inhomogeneous acceptance and dead modules of SPD
 - Changes in the number of active modules in the SPD versus each data taking period
- In addition, at the LHC energies, multiple parton interactions also plays a significative role in the heavy-flavour production^[4].

ALICE detectors

- Detectors used for electron identification in low and intermediate transverse momentum range ($0.5 < p_T < 4.5 \text{ GeV}/c$) :
 - Time Projection Chamber (TPC)
 - Time of Flight (TOF)
- Inner Tracking System (ITS) : Tracking and particle identification (PID), vertexing
- Silicon Pixel Detector (SPD) -Multiplicity measurement
- V0 detector : Triggering and multiplicity measurement

Total number of events analyzed : ~ 155 M minimum-bias pp collisions at $\sqrt{s} = 13$ TeV

Inclusive electron identification

The charged-particle identification (PID) in the TPC is based on the specific energy loss measurement,

• To obtain the true SPD tracklet number ($N_{\text{tracklet}}^{\text{corr}}$), the SPD efficiency was equalized along the Z vertex for each event by scaling the distribution of N_{tr} vs. Z vertex with respect to a particular reference value of N_{tr} at a particular Z vertex.

• $N_{\text{tracklet}}^{\text{corr}}$ does not account for the global efficiency loss of the SPD. To obtain a dependence of $N_{\text{tracklet}}^{\text{corr}}$ on the true charged particle multiplicity of the event, N_{ch} , a linear fit is done on the total distribution and in several multiplicity bins.

The fit parameter (α) gives the SPD tracklet to primary charged particle effect.

• The value $(dN_{ch}/d\eta)/< dN_{ch}/d\eta > (X-axis)$ is calculated as :

 $\frac{(\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta)}{<\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta>} = \frac{< N_{\mathrm{tracklet}}^{\mathrm{corr}} >_{\mathrm{i}} .\alpha_{\mathrm{i}}}{< N_{\mathrm{tracklet}}^{\mathrm{corr}} > . < \alpha>}$

where "i" denotes multiplicity class

Results

The self-normalized yield of electrons from heavy-flavour hadron decays is calculated using the following formula:

dE/dx, of a particle in the gas detector while the TOF detector uses its time of flight. The electron sample is selected within the optimized TOF PID cut $|n\sigma^{TOF}| < 3$ and TPC PID cut $-1 < n\sigma^{TPC} < 3$ to remove the hadron contamination from the sample, where $n\sigma$ is the difference of the measured signal in the detector from the expected value for electrons.

Photonic background subtraction

- The photonic background electrons which mainly come from the Dalitz decay of light neutral mesons $(\pi^0 \text{ and } \eta)$ and γ conversions in the detector material, are subtracted from the inclusive electron sample using the photonic electronic tagging method.
- To identify electrons from photonic sources (N_{photonic}), opposite signed partners (e⁻ e⁺) are paired in an invariant mass spectrum. The like sign (LS) pairs are used to estimate and subtract the random combinatorial background from the unlike sign pairs (ULS).

$$y = \frac{N_{\text{counts}}^{\text{i}} / (\epsilon^{\text{i}} \times n_{\text{events}}^{\text{i}})}{(N_{\text{counts}}^{\text{total}}) / (\epsilon^{\text{total}} \times n_{\text{events}}^{\text{total}} / \epsilon_{\text{trigger}})}$$

where, "i" denotes the multiplicity class, $\epsilon_{\text{trigger}}$ is the minimum bias trigger efficiency estimated for INEL > 0 events which is defined as inelastic events with atleast 1 charged particle within $|\eta| < 1$, N_{counts} is the number of electrons from heavy-flavour hadron decays, n_{events} is the number of events and ϵ is the recostruction efficiency.

The self-normalized yield shows a faster than linearly increasing trend.
Higher p_T intervals show tendency for steeper increase.

The results are compared to J/ψ measurements and PYTHIA8.2 predictions at $\sqrt{s} = 13$ TeV and with the self-normalized yield of μ from open heavy-flavour hadron decays at $\sqrt{s} = 8$ TeV at forward rapidity.

Summary

- The self-normalized yield of electrons from heavy-flavour hadron decays is measured in the transverse momentum interval $0.5 < p_T(\text{GeV}/c) < 4.5 \text{ GeV}/c$.
- The self-normalized yield shows a faster than linearly increasing trend and higher p_T intervals tend to have a faster increase in yield.
- The results are comparable with J/ ψ measurements and PYTHIA8.2 predictions at \sqrt{s} =13 TeV.
- Muons from open heavy-flavour hadron decays at $\sqrt{s} = 8$ TeV at forward rapidity seem to be much less affected due jet bias and autocorrelation effects at low multiplicity.