

TMVA methods to reconstruct $\Lambda_c^+ \to p K^0_s$ in p–Pb collisions with ALICE at the LHC

with Alice at the Line

Jeremy Wilkinson (INFN Bologna) on behalf of the ALICE Collaboration

AITCF

Inner Tracking System (ITS):

Vertexing, tracking, $|\eta|$ < 0.9

Physics motivation

- Heavy quarks (**charm** & **beauty**) are formed in early hard scattering processes in heavy-ion collisions

 → sensitive probe of strongly-interacting medium
- Λ_c^+ baryon: Lightest charmed baryon. Measuring production gives insight into charm-quark hadronisation
- Light-flavour sector: Enhancement of Λ/K^0 and p/ π baryon-to-meson ratios in heavy-ion collisions
- Mass-induced effect (← radial flow) and/or effect of quark coalescence on hadronisation mechanisms?
- Do these effects extend to the charm sector?
- Measurements in p–Pb collisions: Search for evidence of initial-state nuclear effects

\\ _c^+ baryon reconstruction

- Λ_c^+ baryons reconstructed in fully hadronic decay channel: $\Lambda_c^+ \to K^0_s (\to \pi^+ \pi^-)$ (total BR: 1.09%^[1])
- K⁰_s candidate from pair vertex of unlike-sign pions
- Paired with bachelor proton close to primary vertex to construct Λ_c^+ candidate
- Preselection of candidates using:
- →distance of closest approach (DCA) of $K_s^0 \to \pi^+\pi^-$ decay daughters
- →cosine of pointing angle between K⁰_s flight line & reconstructed momentum

- Vertex reconstruction with ITS
- Tracking with TPC & ITS
- Particle identification (PID) with TPC (via d*E*/d*x*) & TOF (via time-of-flight)
 Data sample

Time Projection Chamber (TPC):

PID, tracking, $|\eta| < 0.9$

- 6 x 10⁸ minimum-bias p–Pb events at $\sqrt{s_{NN}} = 5.02$ TeV (sixfold increase over Run 1)
- Monte Carlo (MC) samples based on HIJING + PYTHIA6 (Perugia 2011 tune) used for efficiency corrections and signal/background training

Toolkit for Multivariate Analysis (TMVA) [2]

Further selection with **Boosted Decision Trees** to reduce combinatorial background.

Machine learning approach that separates "signal-like" from "background-like" candidates based on MC training

Trained on multiple variables (impact parameter & $p_{\rm T}$ of bachelor track, Bayesian PID probability assigned to bachelor proton, mass and $c\tau$ of ${\rm K^0}_{\rm S}$)

Simplifies all variables to a single axis ("BDT weight") Trained separately in each p_T interval; efficiency computed as the fraction of generated Λ_c selected

Signal extraction

Time-of-Flight (TOF):

PID, $|\eta| < 0.9$

- Λ_c⁺ baryon signal extracted via fit to invariant mass distribution after selections
- Modelled with Gaussian function for signal, exponential for background.
- Width of Gaussian function determined from MC; mean left as free fit parameter
- Raw signal corrected for selection efficiency using MC: preselection efficiency, BDT efficiency, geometrical acceptance
- Feed-down subtraction using FONLL pQCD calculations of beauty production

± 3.7% lumi. uncertainty not shown

ALICE Preliminary

 $-0.96 < y_{\rm cms} < 0.04$

p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

- $\Lambda_c^+ \to pK_s^0$, STD

 $- \rightarrow pK_c^0$, MVA

 $\Lambda_c^+ \to pK^-\pi^+$, STD

 $p_{_{\perp}}$ (GeV/c)

 $- \bullet - \Lambda_c^+$ (combined)

Results & Conclusions

Λ_c^+ baryon cross section:

In good agreement with analyses using other decay channels and analysis techniques - see posters by **C. Hills** ($\Lambda_c^+ \to pK\pi$, poster 269), **E. Meninno** ($\Lambda_c^+ \to pK^0_s$ with standard cuts, poster 44), **Y. Watanabe** (Pb–Pb collisions, poster 132)

Results consistent with run-1 measurement^[3], factor of 2 improvement in statistical precision; wider p_T range measured (1–2 & 12–24 GeV/c)

Λ_c^+ /D⁰ production ratio:

Results consistent in pp[3] and p-Pb collisions within uncertainties

Baryon-to-meson ratio generally higher than predicted by models (PYTHIA8 with enhanced colour reconnection)^[3] Similar pattern to Λ/K_s^0 and p/π ratios; similar values to Λ/K_s^0 ratio in both systems within uncertainties

Measurement ongoing in pp collisions at $\sqrt{s} = 5$ TeV (3x more statistics than pp at $\sqrt{s} = 7$ TeV^[3]) and 13 TeV

Λ_{c}^{+} baryon nuclear modification factor (R_{pPb}):

Consistent with D-meson $R_{\text{\tiny DPb}}$ in the common measured $p_{\text{\tiny T}}$ interval

Consistent with unity within uncertainties; no evidence of cold nuclear matter effects

 $\mathrm{d}^2\sigma/\mathrm{d}y\mathrm{d}p_{_{\mathrm{T}}}$

10 ⊨

[1] C. Patrignani *et al.* (Particle Data Group), Chin. Phys. C40, 100001 (2017)

[2] A. Hoecker *et al.*, PoS ACAT 040 (2007)

[3] ALICE Collaboration, arXiv:1712.09581 (accepted by JHEP)