Higher Moments of Net-Proton Multiplicity Distributions in Cu+Cu Collisions at $\sqrt{s_{NN}} = 22.4$, 62.4 and 200 GeV from STAR

Zhenzhen Yang, for the STAR Collaboration
Central China Normal University
Lawrence Berkeley National Laboratory

Abstract
Fluctuation of conserved charges is an important tool for studying the properties of QCD phase structures in high-energy nuclear collisions. Previously, the STAR experiment has reported the energy dependence of the cumulants of net-proton, net-charge and net-kaon distributions in Au+Au collisions at RHIC. Non-monotonic energy dependence has been observed in the 4th-order net-proton fluctuations in the top 5% central Au+Au collisions at RHIC. In this poster, we report the efficiency-uncorrected collision energy and centrality dependence of net-proton higher moments for Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$, 62.4 and 200 GeV at RHIC.

Introduction
- Higher moments of the distribution of conserved quantities are predicted to be sensitive to the correlation length, and thus are suitable for the search for the QCD critical point $^{[1,2,3]}$.
- Main observables:
 - Volume independent cumulant ratios:
 \[K_{\sigma^2} = \frac{C_2}{C_1} = \frac{\langle x^2 \rangle}{\langle x \rangle} \]
 \[S_{\sigma^2} = \frac{C_3}{C_2} = \frac{\langle x^3 \rangle}{\langle x^2 \rangle} \]
 \[\frac{\sigma^2}{\langle x \rangle} = \frac{C_4}{C_2} = \frac{\langle x^4 \rangle}{\langle x^2 \rangle} \]
- Cumulant ratios of Cu+Cu collisions from RHIC similar to those of the Au+Au collisions present a new opportunity to measure the system size dependence $^{[4]}$.

Particle Identification
- PID: Energy Loss (dE/dx) in the Time Projection Chamber is used to identify protons within $0.4 < p_T < 0.8$ (GeV/c) and $|y| < 0.5$.

Centrality Determination
- Collision centrality was estimated via the charged particle multiplicity.
- In order to avoid auto-correlations, (anti)protons were excluded from centrality estimation.

Efficiency Uncorrected Cumulant Ratios
- The cumulants of proton, anti-proton and net-proton multiplicity distributions linearly increase with the number of participant.

Summary
- The efficiency-uncorrected cumulants and their ratios of net-proton have been measured in Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$, 62.4 and 200 GeV.
- The values of C_4/C_2 and C_2/C_4 of net-proton increase (decrease) with increasing collision energy, while the C_2/C_1 values are flat as a function of energy.
- Efficiency corrections and systematic uncertainty estimation are in progress.

Reference