Measurement of $K^*(892)$ and $\phi(1020)$ production in p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV with ALICE at the LHC

Dukhishyam Mallick, Sandeep Dudi on behalf of the ALICE Collaboration
1National Institute of Science Education and Research, HBNI, Jatni, India
2Physics Department, Panjab University, Chandigarh, India

1. Motivation

- Recent measurements of highest multiplicity pp and p-Pb collisions exhibit behaviour similar to peripheral Pb-Pb collisions [1].
- Do p-Pb collisions exhibit collective behaviour as seen in A-A collisions?

2. Experiment and analysis details

Data: p-Pb sample at $\sqrt{s_{NN}} = 8.16$ TeV collected in 2016
MC: Dmpjett
Multiplicity estimator: Using VOA multiplicity classes (2.8 < $η_{c}< 5.1$)
PID: TPC + TOF

K* and ϕ are reconstructed via their hadronic decay channels by Invariant mass method.

3. p_T spectra

- p_T spectra are measured in various multiplicity classes using VOA multiplicity estimator.
- Lower panels show ratio of spectra in a given multiplicity class to NSD(0-100%).
- Inverse slope of p_T spectra increases with increasing multiplicity for low p_T.

4. dN/dy and $<p_T>$

- dN/dy (Integrated yield) is obtained in various multiplicity classes.
- It increases approximately linear with average charged particle multiplicity.
- The dN/dy values of K* and ϕ are consistent with the measurements from other energies and systems for a given dN/dy.

5. $dN/dy/dN_{ch}$

- To test how the dN/dy scales with multiplicity, the results have been normalized to the charged particle multiplicity in a given multiplicity class for the various energies and systems.
- Results for various energies and systems show multiplicity independent trend as a function of average charged particle multiplicity.

6. Summary

- K^* and ϕ mesons have been measured in p-Pb collisions at 8.16 TeV with ALICE detector at the LHC.
- p_T spectra for high multiplicity events are observed to be harder.
- dN/dy of K* and ϕ is observed to rise approximately linear with charged particle multiplicity.
- $<p_T>$ of K* and ϕ in low multiplicity change rapidly whereas high multiplicity, no significant increase with charged particle multiplicity.
- Ratio $dN/dy/dN_{ch}$ are seen to be multiplicity independent and show a good agreement with results for pp and Pb-Pb collisions.

References