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  Data : p-Pb sample  at √sNN = 8.16 TeV collected  in  2016 
   
  MC  : Dpmjet   

 Multiplicity estimator : Using V0A multiplicity classes (2.8	<		ηlab	<	5.1) 

  PID : TPC + TOF 

 1.  Invariant mass method : For each event, the invariant mass MπK (MKK) distributions of πK (KK) are 
 constructed using all unlike charge combinations of π and K for K*0 (K+ and K- for ɸ -meson). 
 2.  Combinatorial background: Event mixing technique is used to estimate the combinatorial background. 
 3.  Event Mixing: (5 events, z-Vertex difference < 1 cm, V0A Multiplicity difference (%) < 10). 
 4.  Combinatorial background normalization: Combinatorial background distribution is normalized to the  
region outside the mass peak (1.10 -1.15, 1.04-1.15) (GeV/c2) - for K*0 and ɸ-meson respectively. 
 5.  Signal  = Same event invariant mass distribution  –  scaled mixed event invariant mass distribution. 
 6.  Combined fit: 

          K*0  -  Breit -Wigner  for signal  + 2nd order polynomial for residual background.  
              ɸ    - Voigtian (which is a convolution of a Breit -Wigner peak to describe the ideal signal and a 
Gaussian to account for detector resolution) for signal + 2nd order polynomial for residual background. 

K*0 and  ɸ  are reconstructed via their hadronic decay channels 

by Invariant mass method. 

Analysis is performed  in 8 multiplicity classes.                             

✓ Invariant mass distribution of πK pairs before and 
after background subtraction (for pT	bin 1.4 < pT < 1.6 
GeV/c).

✓ Invariant mass distribution of KK pairs before 
and after background subtraction (for pT bin 
0.6 < pT < 0.8 GeV/c).
Raw yield counts : area under the peak.  
Efficiency x Acceptance correction = Nrec/N gen

✓ pT spectra are measured in various multiplicity classes using V0A  multiplicity 
estimator. 

✓ Lower panels show ratio of spectra in a given multiplicity class to NSD(0-100%).   
✓ Inverse slope of pT spectra increases with increasing multiplicity for low pT.

✓ dN/dy (Integrated yield) is obtained in various multiplicity classes. 
✓ It increases approximately linear with average charged particle multiplicity.  
✓ The dN/dy	values of K*0 and ɸ are consistent with the measurements from other energies and 

systems for a given <dNch/dη>. 

✓ <pT> (Mean transverse momentum) is obtained in various multiplicity classes. 
✓ It increases  with average charged particle multiplicity.  
✓ At low multiplicity, <pT>  of  K*0 and ɸ increases rapidly, but seems to be saturated  at 

high multiplicity.     

✓ To test how the dN/dy scales with multplicity, the results have been normalized to the charged               
particle multiplicity in a given multiplicity class for the various energies and systems. 

✓ Results for various  energies  and systems show multiplicity independent trend as a function 
average charged particle multiplicity. 

❖ K*0 and ɸ mesons have been measured in p-Pb collisions at 8.16 TeV with ALICE detector at 

the LHC. 
❖		pT spectra for high multiplicity events are observed  to be harder . 
❖ dN/dy of K*0 and ɸ is observed to rise approximately linear with charged particle multiplicity. 

❖ <pT>	of  K*0 and ɸ in low multiplicity change rapidly whereas high multiplicity, no significant 

increase with  charged particle multiplicity. 
❖ Ratio dN/dy/<dNch/dη>  are seen  to be multiplicity independent and show a good agreement 

with results for pp and p-Pb collisions.

1. Adam, J., Adamová, D., Aggarwal, M.M. et al. Eur. Phys. J. C (2016) 76: 245(2016) 
2.  B. Abelev et al., (ALICE Collaboration ), Phys. Rev. C 91, 024609 (2015) 
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❖ Recent measurements of highest 
multiplicity pp  and p-Pb collisions  
exhibit  behaviour similar to 
peripheral Pb-Pb collisions [1]. 

 - Do  p-Pb collisions exhibit 
collective behaviour as seen in A-A 
collisions ?

❖ Decreasing K*0/K ratio and flat ɸ/K ratio as a  

function of multiplicity [1,2].   

-> Can small system (p-Pb) of  higher <dNch/dη>  
show similar re-scattering effect as observed 
in heavy-ion collisions ?

 (0-5 %, 5-10 %, 10-20 %, 20-40%, 40-60 %,60-80%, 80-100%)
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