

K*(892)[±] production in pp collisions at $\sqrt{s} = 5.02$ and 8 TeV

with ALICE at the LHC

Pragati Sahoo, Sudipan De On behalf of the ALICE Collaboration Indian Institute of Technology Indore, India

Pragati.sahoo@cern.ch

Introduction

- ♦ The study of short-lived hadronic resonances in heavy-ion collisions provides information about the hadronic phase of the system. They are good candidates to probe the interplay of particle re-scattering and regeneration in the hadronic phase.
- ♦ K*± is a strange resonance with a short lifetime (~ 4 fm/c) and so its study is very suitable to characterize the hadronic phase in Pb-Pb collisions and supports the measurement from K*0 analysis.
- ♦ Resonance measurements in pp collisions set the baseline for heavy-ion collisions.
- \Rightarrow These studies contribute to the understanding of particle production mechanisms through comparison with different model predictions and constrain different QCD inspired models (like PYTHIA, PHOJET etc.)

K** are reconstructed via two step decay processes:

$$K^{*\pm} \rightarrow \pi^{\pm} + K^{0}_{S}$$
, $K^{0}_{S} \rightarrow \pi^{+} + \pi^{-}$

Particle	Quark content	Mass (MeV/c²)	Width (MeV/c²)	Decay Channels (B.R.)
K*±	$uar{s},ar{u}s$	891.66 ± 0.26	50.8 ± 0.9	$\pi^{\pm} + K^{0}(K^{0} \rightarrow \pi^{+}\pi^{-})(0.66)$ $\pi^{0} + K^{\pm} (\pi^{0} \rightarrow \gamma\gamma)(0.33)$
K*0	$dar{s},ar{d}s$	895.81 ± 0.19	47.4 ± 1.3	$\pi^{\pm} + K^{\mp} (0.66)$

ALICE at The LHC

- ♦ Global tracking in ALICE is performed using the ITS and TPC detectors.
- ♦ Minimum bias trigger accepted, when hits in both the V0A and V0C detectors.
- \Rightarrow The tracks were accepted only in the range $|\eta| < 0.8$, $p_T > 0.15$ GeV/c with the PID selection: $|n\sigma_{\pi TPC}| < 3\sigma$

Detectors used for this Analysis:

- ♦ Inner Tracking system (ITS)
 - Tracking
 - Vertexing
- ♦ Time Projection Chamber (TPC)
 - Main tracking detector
 - Particle identification (PID)
 - Momentum measurement

 K_S^0

Fig.1. Schematic drawing of the ALICE detector at the LHC.

Signal Extraction

- ♦ The uncorrelated combinatorial background is estimated with the event mixing technique.
- ♦ The events for mixing are grouped based on some similar criteria: $||v_z||_{ev1} |v_z||_{ev2} < 2$ cm, difference in multiplicity < 5, etc.
- ♦ The invariant mass distribution is fitted with a non-relativistic Breit –Wigner function and an exponential of 2nd order polynomial in the invariant mass for the residual background:

$$\frac{Y}{2\pi} \frac{\Gamma}{(M_{\pi K_S^0}^0 - M_{K^{*\pm}}^2) + \Gamma^2/4} + exp(pol2) * (M_{K^{*\pm}}^2 - M_{\pi K_S^0}^2)^n$$

The mixed event is normalized with the same event distribution outside the signal region:

1.1 - 1.2 $GeV/c^2(N_{factor})$.

Fig.2. The invariant mass distribution from the same event and from mixed events for $\sqrt{s} = 5.02$ and 8 TeV.

Signal: Same - (N_{factor})×Mixed

Fig.3. The invariant mass distribution after background subtraction.

p_T spectrum and K*±/K*⁰ ratio

Fig.4. (Left) $K^{*\pm}p_T$ spectrum for $\sqrt{s} = 5.02$ TeV with Lévy-Tsallis fit[1]. (Right) $K^{*\pm}$ and K^{*0} p_T spectrum with the ratio ($K^{*\pm}/K^{*0}$) in the bottom panel.

Fig.5. (Left) $K^{*\pm}p_T$ spectrum for $\sqrt{s} = 8$ TeV. (Right) $K^{*\pm}$ and $K^{*0}p_T$ spectrum with the ratio $(K^{*\pm}/K^{*0})$ in the bottom panel.

 \square K** and K*0 p_T spectra are consistent within uncertainties for both the energies as it has been observed for the measurement at 13 TeV.

Model Comparison & Energy Dependence

Fig.6. Comparison of inelastic $K^{*\pm}$ p_T spectrum in pp collisions at $\sqrt{s} = 8$ TeV to PYTHIA8-Monash 2013 prediction[2].

- □ PYTHIA8 overestimates the production at $p_{\rm T}$ < 1 GeV/c but agrees with the results for higher $p_{\rm T}$.
- Fig.7. Ratios of $K^{*\pm} p_T$ spectra at various center-of-mass energies (i.e 8 and 13 TeV) to 5.02 TeV.

5.02 TeV. \Box Spectra become harder with increasing energy :: particle production from hard scattering dominates for higher energies at higher $p_{\rm T}$.

Summary

- \Rightarrow $p_{\rm T}$ spectra, dN/dy and $\langle p_{\rm T} \rangle$ for K** at $\sqrt{s} = 5.02$ and 8 TeV have been measured.
- \Leftrightarrow K** measurement is in agreement with K*0 measurement at the same collision energy within uncertainties.
- ♦ K** $p_{\rm T}$ spectrum has been compared to PYTHIA8 predictions at $\sqrt{s} = 8$ TeV and a good agreement is observed for $p_{\rm T} > 1$ GeV/c within uncertainties.
- \Rightarrow Ratios of K** p_T spectra at various energies to 5.02 TeV show that spectra become harder with increasing energy.

References

- [1] Tsallis C 1988 J. Stat. Phys. 52 479
- [2] T. Sjostrand et al. comp. Phys. Comm. 178(2008) 852