K*(892)[±] production in pp collisions at $\sqrt{s} = 5.02$ and 8 TeV ## with ALICE at the LHC Pragati Sahoo, Sudipan De On behalf of the ALICE Collaboration Indian Institute of Technology Indore, India Pragati.sahoo@cern.ch #### Introduction - ♦ The study of short-lived hadronic resonances in heavy-ion collisions provides information about the hadronic phase of the system. They are good candidates to probe the interplay of particle re-scattering and regeneration in the hadronic phase. - ♦ K*± is a strange resonance with a short lifetime (~ 4 fm/c) and so its study is very suitable to characterize the hadronic phase in Pb-Pb collisions and supports the measurement from K*0 analysis. - ♦ Resonance measurements in pp collisions set the baseline for heavy-ion collisions. - \Rightarrow These studies contribute to the understanding of particle production mechanisms through comparison with different model predictions and constrain different QCD inspired models (like PYTHIA, PHOJET etc.) K** are reconstructed via two step decay processes: $$K^{*\pm} \rightarrow \pi^{\pm} + K^{0}_{S}$$, $K^{0}_{S} \rightarrow \pi^{+} + \pi^{-}$ | Particle | Quark content | Mass
(MeV/c²) | Width
(MeV/c²) | Decay Channels (B.R.) | |----------|-----------------|-------------------|-------------------|--| | K*± | $uar{s},ar{u}s$ | 891.66 ± 0.26 | 50.8 ± 0.9 | $\pi^{\pm} + K^{0}(K^{0} \rightarrow \pi^{+}\pi^{-})(0.66)$ $\pi^{0} + K^{\pm} (\pi^{0} \rightarrow \gamma\gamma)(0.33)$ | | K*0 | $dar{s},ar{d}s$ | 895.81 ± 0.19 | 47.4 ± 1.3 | $\pi^{\pm} + K^{\mp} (0.66)$ | #### **ALICE at The LHC** - ♦ Global tracking in ALICE is performed using the ITS and TPC detectors. - ♦ Minimum bias trigger accepted, when hits in both the V0A and V0C detectors. - \Rightarrow The tracks were accepted only in the range $|\eta| < 0.8$, $p_T > 0.15$ GeV/c with the PID selection: $|n\sigma_{\pi TPC}| < 3\sigma$ #### **Detectors used for this Analysis:** - ♦ Inner Tracking system (ITS) - Tracking - Vertexing - ♦ Time Projection Chamber (TPC) - Main tracking detector - Particle identification (PID) - Momentum measurement K_S^0 Fig.1. Schematic drawing of the ALICE detector at the LHC. ## **Signal Extraction** - ♦ The uncorrelated combinatorial background is estimated with the event mixing technique. - ♦ The events for mixing are grouped based on some similar criteria: $||v_z||_{ev1} |v_z||_{ev2} < 2$ cm, difference in multiplicity < 5, etc. - ♦ The invariant mass distribution is fitted with a non-relativistic Breit –Wigner function and an exponential of 2nd order polynomial in the invariant mass for the residual background: $$\frac{Y}{2\pi} \frac{\Gamma}{(M_{\pi K_S^0}^0 - M_{K^{*\pm}}^2) + \Gamma^2/4} + exp(pol2) * (M_{K^{*\pm}}^2 - M_{\pi K_S^0}^2)^n$$ The mixed event is normalized with the same event distribution outside the signal region: 1.1 - 1.2 $GeV/c^2(N_{factor})$. Fig.2. The invariant mass distribution from the same event and from mixed events for $\sqrt{s} = 5.02$ and 8 TeV. Signal: Same - (N_{factor})×Mixed Fig.3. The invariant mass distribution after background subtraction. ## p_T spectrum and K*±/K*⁰ ratio Fig.4. (Left) $K^{*\pm}p_T$ spectrum for $\sqrt{s} = 5.02$ TeV with Lévy-Tsallis fit[1]. (Right) $K^{*\pm}$ and K^{*0} p_T spectrum with the ratio ($K^{*\pm}/K^{*0}$) in the bottom panel. Fig.5. (Left) $K^{*\pm}p_T$ spectrum for $\sqrt{s} = 8$ TeV. (Right) $K^{*\pm}$ and $K^{*0}p_T$ spectrum with the ratio $(K^{*\pm}/K^{*0})$ in the bottom panel. \square K** and K*0 p_T spectra are consistent within uncertainties for both the energies as it has been observed for the measurement at 13 TeV. ## Model Comparison & Energy Dependence Fig.6. Comparison of inelastic $K^{*\pm}$ p_T spectrum in pp collisions at $\sqrt{s} = 8$ TeV to PYTHIA8-Monash 2013 prediction[2]. - □ PYTHIA8 overestimates the production at $p_{\rm T}$ < 1 GeV/c but agrees with the results for higher $p_{\rm T}$. - Fig.7. Ratios of $K^{*\pm} p_T$ spectra at various center-of-mass energies (i.e 8 and 13 TeV) to 5.02 TeV. 5.02 TeV. \Box Spectra become harder with increasing energy :: particle production from hard scattering dominates for higher energies at higher $p_{\rm T}$. ## Summary - \Rightarrow $p_{\rm T}$ spectra, dN/dy and $\langle p_{\rm T} \rangle$ for K** at $\sqrt{s} = 5.02$ and 8 TeV have been measured. - \Leftrightarrow K** measurement is in agreement with K*0 measurement at the same collision energy within uncertainties. - ♦ K** $p_{\rm T}$ spectrum has been compared to PYTHIA8 predictions at $\sqrt{s} = 8$ TeV and a good agreement is observed for $p_{\rm T} > 1$ GeV/c within uncertainties. - \Rightarrow Ratios of K** p_T spectra at various energies to 5.02 TeV show that spectra become harder with increasing energy. ### References - [1] Tsallis C 1988 J. Stat. Phys. 52 479 - [2] T. Sjostrand et al. comp. Phys. Comm. 178(2008) 852