

Bayesian unfolding of charged-particle p_T spectra measured with ALICE at the LHC

Mario Krüger¹ for the ALICE Collaboration

Motivation

- ALICE experiment is dedicated to study the Quark-Gluon-Plasma created in ultrarelativistic heavy-ion collisions.
- Complementary reference measurements in proton-lead (p-Pb) and proton-proton (pp) collisions.
- Study effects of multiple-parton interactions and hadronization beyond independent string fragmentation.
- Fundamental observable: correlation between transverse-momentum (p_T) spectra of charged particles and corresponding charged-particle multiplicities.

ALICE tracking detectors

- Inner Tracking System (ITS)
- Time Projection Chamber (TPC)
- Transition Radiation Detector (TRD)

True vs. Measured Multiplicity

- Detector efficiency affects multiplicity $\rightarrow N_{\rm ch}$ (true) $\neq N_{\rm acc}$ (measured).
- \bullet Events with many different $N_{\rm ch}$ can be measured as same N_{acc} .
- \bullet Probability for $N_{\rm ch}$ to be measured as $N_{\rm acc}$ is given by detector response $P(N_{\rm acc}|N_{\rm ch})$ from MC simulations (fig. 1).
- Measurement needs to be unfolded to reconstruct correlation between yield and true multiplicity.

Figure 1: Detector response matrix.

Unfolding of p_T Spectra

- Transverse-momentum spectra measured as function of $N_{\rm acc}$.
- Correlation between N_{ch} and p_{T} spectra is unknown in experiment.
- Particles from events of different N_{ch} contribute to same N_{acc} .
- Stochastic method to reconstruct p_T spectra as function of N_{ch} from p_T spectra as function of N_{acc} .
- Iterative procedure based on Bayes' theorem [1]:
- Input: detector response + p_T -dependent $N_{\rm acc}$ distribution.
- Output: p_T -dependent N_{ch} distribution.
- Example (figure 2): pp collisions simulated with PYTHIA8 [2] Monash-2013 at \sqrt{s} = 5.02 TeV propagated through GEANT-3 [3] model of ALICE.

Transverse-momentum spectra of inclusive charged particles as function of the measured multiplicity $N_{\rm acc}$ (left) and as function of the true multiplicity N_{ch} after unfolding (right).

MC Closure Tests

- Self-consistency check of procedure via MC simulation: unfold measured p_{T} spectra and compare with MC truth.
- Study of first three moments as function of $N_{\rm ch}$.
- Alternative re-weighting method used in previous publications ([4], [5]) shows deviation from MC truth (bias was included to full extent in systematic uncertainties).
- Bayesian unfolding provides better results and reduces systematic uncertainties.

Figure 3: Closure tests for first three moments of the unfolded transverse-momentum spectra as function of $N_{\rm ch}$.

Energy and System Size Dependence

Figure 4: $\langle p_T \rangle$ vs. N_{ch} of unfolded transverse-momentum spectra. Left panel: pp collisions at $\sqrt{s} = 5.02$, 8 and 13 TeV. Right panel: pp, p-Pb and Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

Outlook

- Study energy dependence of p_{T} spectra in pp collisions measured by ALICE at $\sqrt{s} = 0.9, 2.76, 5.02, 7, 8$ and 13 TeV.
- Study system size dependence of p_T spectra in pp, p-Pb and Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
- [1] G. D'Agostini. A multidimensional unfolding method based on Bayes' theorem. Nucl. Instr. Meth. Phys. Res. A 362 (1995) 487-498. [2] T. Sjöstrand, S. Ask et al. An introduction to PYTHIA 8.2. Computer Physics Communications (2015). [3] R. Brun, F. Bruyant et al. GEANT detector description and simulation tool. CERN Program Library long writeup W5013 (1994).

- [4] ALICE Collaboration. Transverse momentum spectra of charged particles in proton-proton collisions at $\sqrt{s} = 900$ GeV with ALICE at the LHC. Phys. Lett. B 693 (2010) 53-68. [5] ALICE Collaboration. Multiplicity dependence of the average transverse momentum in pp, p-Pb, and Pb-Pb collisions at the LHC. Phys. Lett. B 727 (2013) 371-380.

27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

