Measurement of J/ ψ polarization in p+p collisions at \sqrt{s} = 200 GeV through the di-muon channel at STAR

Abstract

Quarkonium production mechanism in elementary collisions has not been fully understood. Experimental data on the J/ ψ cross section in p+p collisions can be described relatively well by several models that are currently available on the market. However, these models differ in their predictions for the J/ ψ polarization. Therefore precise measurements of J/ ψ polarization can provide further constraints on the production models. During the RHIC 2015 run, the STAR experiment recorded a large sample of p+p collisions at \sqrt{s} = 200 GeV triggered by the Muon Telescope Detector for charmonium studies via the di-muon decay channel. In this poster, we will present the J/ ψ polarization measurement in the helicity and Collins-Soper reference frames utilizing this data set. The polarization parameters λ_{θ} and λ_{φ} are extracted from simultaneous fit to 1-dimensional polar and azimuthal angular distributions of decayed μ^+ in the J/ ψ transverse momentum range of 0-5 GeV/c in both frames. The results will be compared with similar measurements in higher transverse momentum region as well as with model calculations.

Motivation and Introduction

QCD factorization:

- Long distance process: no full-QCD description of quarkonium formation,
 - Model dependent;
 - Input from experiments needed.
- J/ ψ polarization can be analyzed via the angular distribution of the decayed positively charged leptons^[1], which can be expressed as:

$$W(\cos\theta,\varphi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\varphi}\sin^2\theta\cos2\varphi + \lambda_{\theta\varphi}\sin2\theta\cos\varphi)$$

 $|\lambda_{\theta}| < 1, \qquad \left|\lambda_{\varphi}\right| \le \frac{1}{2}(1 + \lambda_{\theta})$

• λ_{θ} and λ_{φ} can be extracted from simultaneous fit to 1-dimensional angular distributions,

- θ polar angle between momentum of positive lepton in J/ ψ rest frame and polarization axis z.
- φ corresponding azimuthal angle.
- Polarization axis z,
 - \circ Helicity (HX) frame: along J/ ψ momentum in center-of-mass frame of colliding beams;
 - o Collins-Soper (CS) frame: bisector of the angle formed by one beam direction and the opposite direction of the other beam in the J/ ψ rest frame.
- Frame invariant quantity:

$$\lambda_{inv} = \frac{\lambda_{\theta} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$$

- \circ Any arbitrary choice of the experimental observation frame should give the same value of λ_{inv} ;
- Good cross-check on measurements performed in different frames.

Efficiency and Acceptance Corrections

- Raw J/ ψ distributions have to be corrected for the STAR detector acceptance and efficiency.
- The complication is that the acceptance correction is sensitive to the J/ ψ polarization parameters, which are not known a priori.
- An iterative procedure is used to overcome this complication.

• An example of the last iteration for $0 < p_T < 1 \text{ GeV/c}$.

References

- [1] P. Faccioli et al. (2010) Eur. Phys. J. C 69, 657
- [2] C. Yang et al. (2014) Nuclear Instruments and Methods in Physics Research A 762: 1–6
- [3] L. Adamczyk et al. (STAR) (2014) Physics Letters B 739: 180-188
- [4] A. Adare et al. (PHENIX) (2010) Phys. Rev. D 82, 012001
- [5] B.A. Kniehl et al. (2017) Phys. Rev. D 96, 054014 (use the matrix elements)
- [6] Hong-Fei Zhang et al. (2015) Phys. Rev. Lett 114, 092006
- [7] Bin Gong et al. (2013) Phys. Rev. Lett 110, 042002

STAR Experiment

- Top right: A schematic view of the entire Muon Telescope Detector (MTD) system. MTD covers 45% in φ and $|\eta|$ < 0.5. It is used to trigger on and identify muons which emit less Bremsstrahlung radiation compared to electrons.
- Bottom right: A schematic side-view of the Multi-gap Resistive Plate Chambers with long readout strips (LMRPC) used in the MTD design: time resolution ~100 ps and spatial resolution ~1-2 cm^[2].

Results and Conclusions

The measured inclusive J/ψ polarization:

- λ_{θ} and λ_{φ} parameters are consistent with 0 in HX and CS frames.
- λ_{inv} as a function of p_T are consistent between HX and CS frames.
- Newly measured λ_{θ} parameter is consistent with the previous results^[3, 4], even though the trends seem a bit different at high p_T.
- Color Singlet Model (CSM) calculation^[3] (direct J/ ψ) and Color Octet Model^[4] (COM) calculation (direct J/ ψ) are in agreement with data while an improved Color Evaporation Model^[5] (prompt J/ ψ) calculation is touching the upper limit of some data points.

Comparison with NRQCD approach^[6]:

- Model calculations for different kinematic regions (|y| < 0.5 and |y| < 1) using two sets of Long Distance Matrix Elements (LDMEs).
- Theoretical calculations are in agreement with data within uncertainties. The substantial difference in J/ ψ polarization at low p_T when different LDMEs are used, points to the potential of constraining the LDMEs with J/ ψ polarization measurements of better precision in the future.

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (Grant No.11675186, the sub-topic of the 973 project. (HH2030040069)

