

Physics motivation

- Heavy quarkonia $(c\bar{c}, b\bar{b})$ produced at the early stage of relativistic heavy-ion collisions at the LHC energy are the striking probe to study the Quark-Gluon Plasma (QGP) i.e a hot and dense deconfined medium.
- Colour screening (suppression of $q\bar{q}$), sequential suppression [1] and regeneration phenomena (enhancement of $q\bar{q}$) influence quarkonium production due to QGP.
- Cold Nuclear Matter (CNM) effects which include shadowing or gluon saturation and energy loss can also lead to a modification of quarkonium production.
- In order to disentangle the CNM effects from the hot nuclear matter effect, quarkonium production is studied in p–Pb collisions where QGP is not expected to be formed.
- Bottomonia $(\Upsilon(nS))$ are good candidates for the study of CNM effects in p-Pb collisions in order to properly

$\Upsilon(1S) Q_{\text{pPb}} \text{ at } \sqrt{s_{\text{NN}}} = 8.16 \text{ TeV}$

• The $\Upsilon(1S)$ nuclear modification factor has been also studied as a function of the collision centrality • We use $Q_{\rm pPb}$ instead of $R_{\rm pPb}$ due to a possible bias in the determination of centrality [4,5]

understand the suppression in Pb–Pb collisions.

• Bottomonium production is studied with the ALICE forward spectrometer via its $\mu^+\mu^-$ decay channel.

• No strong dependence of Q_{pPb} on centrality within uncertainties at both forward and backward rapidities

• $Q_{\rm pPb}$ suppression is larger at forward rapidity

$\Upsilon(1S)$ $R_{\rm pPb}$ comparison with models prediction

• The rapidity and $p_{\rm T}$ dependence of the $R_{\rm pPb}$ are compared to the NLO CEM calculation using the EPS09 parameterization of the nuclear modification of the gluon PDF [6,7] and to a parton energy loss calculation [8] with and without EPS09 gluon shadowing at NLO

- ALICE has taken p-Pb data at $\sqrt{s_{\rm NN}} = 5.02$ TeV (Run I and Run II) and at $\sqrt{s_{\rm NN}} = 8.16$ TeV (Run II).
- Due to energy asymmetry of LHC beams in p–Pb collisions, the nucleon-nucleon center of mass frame of the collisions is shifted by $\Delta y = 0.465$ w.r.t. laboratory frame in the direction of the proton beam

• In the center of mass frame, the muon spectrometer covers the forward rapidity region $2.03 < y_{\rm cms} < 3.53$ and backward rapidity region $-4.46 < y_{\rm cms} < -2.96$

Nuclear modification factor

The nuclear modification factor is defined as:

$$R_{\rm pPb} = \frac{N_{\Upsilon}}{\langle T_{\rm pPb} \rangle \ . \ (A \times \varepsilon) \ . \ N_{\rm MB} \ . \ BR_{\Upsilon \to \mu^+ \mu^-} \ . \ \sigma_{\Upsilon}^{\rm pp}}$$

where:

- N_{Υ} is the number of Υ in a given $y_{\rm cms}$, $p_{\rm T}$ or centrality bin obtained from the signal extraction.
- $\langle T_{\rm pPb} \rangle$ is the centrality-dependent average nuclear overlap function.
- $A \times \epsilon$ is the product of the detector acceptance and the reconstruction efficiency.
- $N_{\rm MB}$ is the number of collected minimum-bias events.

• $BR_{\Upsilon \to \mu^+\mu^-}$ is the branching ratio of Υ in dimuon decay channel ($BR_{\Upsilon(1S)\to\mu^+\mu^-}=2.48\pm0.05\%$, $BR_{\Upsilon(2S)\to\mu^+\mu^-}=1.93\pm0.17\%$).

• $\sigma_{\Upsilon}^{\rm pp}$ is the inclusive Υ production cross section for pp collisions at the same energy, $y_{\rm cms}$ and $p_{\rm T}$ interval as for p-Pb collisions.

 $\Upsilon(1S) R_{\text{pPb}} \text{ at } \sqrt{s_{\text{NN}}} = 8.16 \text{ TeV} \text{ and } 5.02 \text{ TeV}$

• The shadowing calculation and energy loss describes the $p_{\rm T}$ and rapidity dependent results at forward rapidity within uncertainties while they overestimate the data at backward rapidity

• The smaller $\Upsilon(2S)$ statistics does not allow differential studies, hence only results integrated over y and p_T are presented.

• The two resonances show similar suppression, slightly larger for $\Upsilon(2S)$

Conclusions

• Suppression of the $\Upsilon(1S)$ yields in p-Pb collisions is observed at both forward and backward rapidities w.r.t binary-scaled pp collisions at the same center-of-mass energy of 8.16 TeV

• The $R_{\rm pPb}$ values are similar at forward and backward rapidities with a hint for a stronger suppression at low $p_{\rm T}$

У_{стs} Y_{cms ALI-PREL-148372} ALI-PREL-148409 • $\Upsilon(1S)$ suppression observed both at forward and backward rapidity [2,3]. The suppression is about 2.8 σ and 1.7 σ at forward and backward rapidity, respectively.

• Compatible $R_{\rm pPb}$ at $\sqrt{s_{\rm NN}} = 5.02$ and 8.16 TeV [2,3]

The large data sample collected by ALICE during the 2016 p–Pb run allows to study R_{pPb} as function of p_T

• Stronger $\Upsilon(1S)$ suppression observed at low $p_{\rm T}$ both at forward and backward rapidities [3]

• At both rapidity intervals there is no evidence for a centrality dependence of the $\Upsilon(1S) Q_{pPb}$

• The results obtained at $\sqrt{s_{\rm NN}} = 8.16$ TeV are compatible with those measured by ALICE in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV during LHC Run I

- Models based on nuclear shadowing and coherent parton energy loss fairly describe the data at forward rapidity, while they tend to overestimate the $R_{\rm pPb}$ at backward rapidity [2,3]
- $\Upsilon(2S)$ R_{pPb} shows a similar suppression in the two investigated rapidity ranges. The results for the two resonances are compatible within one sigma

ALICE Public Note: Inclusive Υ production in p–Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV [ALICE-PUBLIC-2018-008] NEW

References

[1] T. Matsui and H. Satz, Phys. Lett. B 178 (1986) 416 [2] ALICE Collaboration, Phys. Lett. B740:105117, 2015 [3] ALICE Collaboration, CERN-ALICE-PUBLIC-2018-008 [4] J. Adam et al., (ALICE Coll.) JHEP 11 (2015) 127

[5] ALICE Collaboration, CERN-ALICE-PUBLIC-2017-007 [6] R. Vogt, Phys. Rev. C92 no. 3, (2015) 034909 [7] J. L. Albacete et al., Nucl. Phys. A972 (2018) 1885 [8] F. Arleo et al. JHEP 03 (2013) 122