

Measurements of D**-meson production as a function of centrality in p-Pb collisions with ALICE

Cristina Bedda (Utrecht University) for the ALICE Collaboration

Heavy flavour: physics motivation

Charm and beauty quarks are produced in hard scattering processes in the inital stages of high-energy heavy-ion collisions → they are an excellent probe to study the medium created in these collisions.

p-Pb collisions → investigate **Cold Nuclear Matter** effects in the initial and final state in order to disentangle them from hot nuclear matter effects in Pb-Pb collisions

Measurements as a function of **centrality** in p-Pb collisions allow us to study:

- Interplay between hard and soft processes in particle production
- Hints of collective effects in p-Pb collisions

Analysis strategy

D*+ mesons are fully reconstructed through their hadronic decay channel^[1]: D*+ \rightarrow D⁰ (\rightarrow K- π +) π +

BR: $67.7\%(D^{*+} \rightarrow D^{0}\pi^{+}) \times 3.89\%(D^{0} \rightarrow K^{-}\pi^{+})$

- D*+ yields extracted from an invariant mass analysis of the candidates selected on the basis of the topology of the decay
- K and π are identified to reduce the combinatorial background

Corrections:

Acceptance x Efficiency

Signal corrected for the acceptance of the detector and for the reconstruction and selection efficiency obtained from Monte Carlo simulations

- B feed-down subtraction
- Contribution of the D*+ mesons from B decays is corrected for by computing the fraction of prompt D*+ in the raw yield, fprompt
- f_{prompt} is evaluated using a method based on FONLL calculations for prompt and feed-down production cross sections

The fraction of prompt D*+ obtained from FONLL calculations is in agreement with results from a data-driven method that exploits the different shapes of prompt and feed-down D*+ distributions of the transverse-plane impact parameter (d_0)

 $F(d_0) = S \cdot \{f_{\text{prompt}} \cdot F_{\text{prompt}}(d_0) + (1 - f_{\text{prompt}}) \cdot F_{\text{deed-down}}(d_0)\} + B \cdot F_{\text{bkg}}(d_0)$

References

¹PDG, Chin. Phys. C40 (2016) 100001

²HEP 9805 (1998) 007

³ALICE-PUBLIC-2017-008 ⁴Phys. Rev. C 91 (2015) 064905

The ALICE experiment

LHC Run 2 p-Pb collisions at 5.02 TeV^[3]: L_{int} =(292 ±10.8) μ b⁻¹

- 6 times higher statistics with respect to LHC Run 1
- Sample divided into **centrality classes**using the energy deposited in the neutron
 calorimeter on the Pb-going side (ZNA)

		$\langle au_{pPb} angle$	⟨ N coll⟩	N events
0	0-10%	0.17	14.0	60 M
20	60-100%	0.05	2.3	250 M

 $\langle T_{
m pPb}
angle = rac{\langle N_{
m coll}
angle}{\sigma_{
m NN}}$ where $\langle T_{
m pPb}
angle$ number of contractions particle multi

where $\langle T_{\text{pPb}} \rangle$ is the average nuclear overlap function and $\langle N_{\text{coll}} \rangle$ is the average number of collisions obtained from the hybrid method^[4] assuming that the charged-particle multiplicity measured at mid-rapidity scales with the number of participants.

Results and conclusions

Q_{pPb}: Nuclear modification factor in a given centrality class

D-meson pp reference obtained by scaling the measurement at 7 TeV

- Q_{pPb} in 0-10% and 60-100% centrality classes compatible within uncertainties
- D-meson Q_{pPb} consistent within uncertainties with charged-particle Q_{pPb} in both centrality classes^[4]

QCP: Central/peripheral ratio

- ☑ Independent of the pp reference
- ☑ Track reconstruction, selection and PID efficiency cancels in the ratio
 → reduced systematic uncertainties

- D^{*+} , D^0 and D^+ Q_{CP} consistent within uncertainties
- Hint of D-meson $Q_{CP} > 1$ in $3 < p_T < 8$ GeV/c by 1.5σ Might be induced by initial or final state effects. Might indicate charm radial flow in p-Pb collisions
- D-meson Q_{CP} consistent within uncertainties with charged-particle Q_{CP}^[4]