

The STAR BES-II and Forward Rapidity Physics and Upgrades

Qian Yang for the STAR Collaboration *Shandong University Brookhaven National Laboratory*

Outline

• STAR Beam Energy Scan II Program (start at 2019)

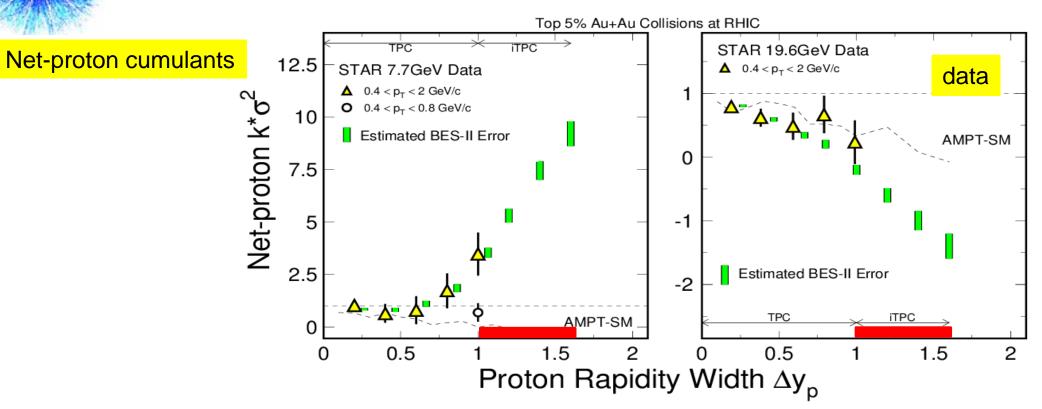
- Motivation and projections
- The inner Time Projection Chamber
- The endcap Time-Of-Flight
- The Event Plane Detector

Forward Physics Opportunities at STAR (2021+)

- Motivation
- The Forward Tracking System
- The Forward Calorimeter System
- Summary

Beam Energy Scan Phase II (BES-II)

Early Universe LHC Experiments RHIC Experiments		√S _{NN} (GeV)	Proposed Event Goals (M)	BES-I Event (M)
		7.7	100	4
↓ × Ch _R		9.1	160	N/A
Quark-Gluon Plasma	-	11.5	230	12
-170 MeV Crossove Fixed-target		14.5	300	20
st order phase to		19.6	400	36
Critical Poin. Hadron Gas		3.0 - 7.7	~100 per energy	N/A
Nuclear Superconductor	Collider mode			
0 MeV Vacuum 0 MeV 900 MeV Baryon Chemical Potential		F	Fixed-target mode	Э


RHIC BES-II: 10-25 times more statistics and detector upgrades

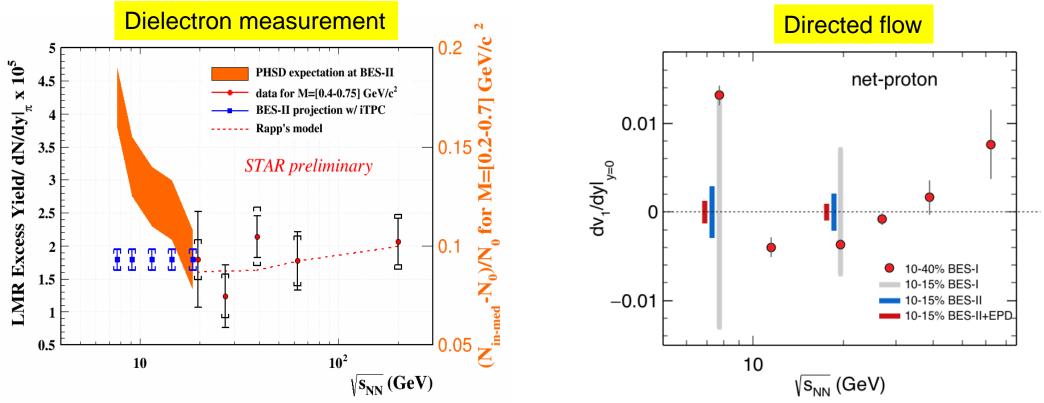
 \rightarrow Dramatically reduce the uncertainties!

✓ Map the QCD phase diagram $200 < \mu_B ≤ 720 \text{ MeV}$

 \rightarrow Signs of 1st-order phase transition, QCD critical point, signature of QGP turn-off.

Searching for Critical Point

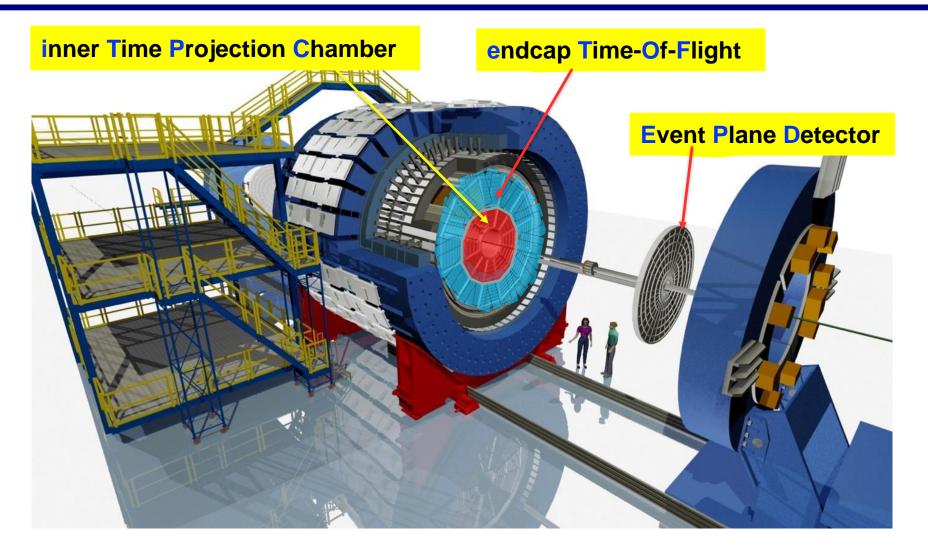
✓ Non-trivial energy dependence from BES-I


✓ Rapidity length of correlation is important

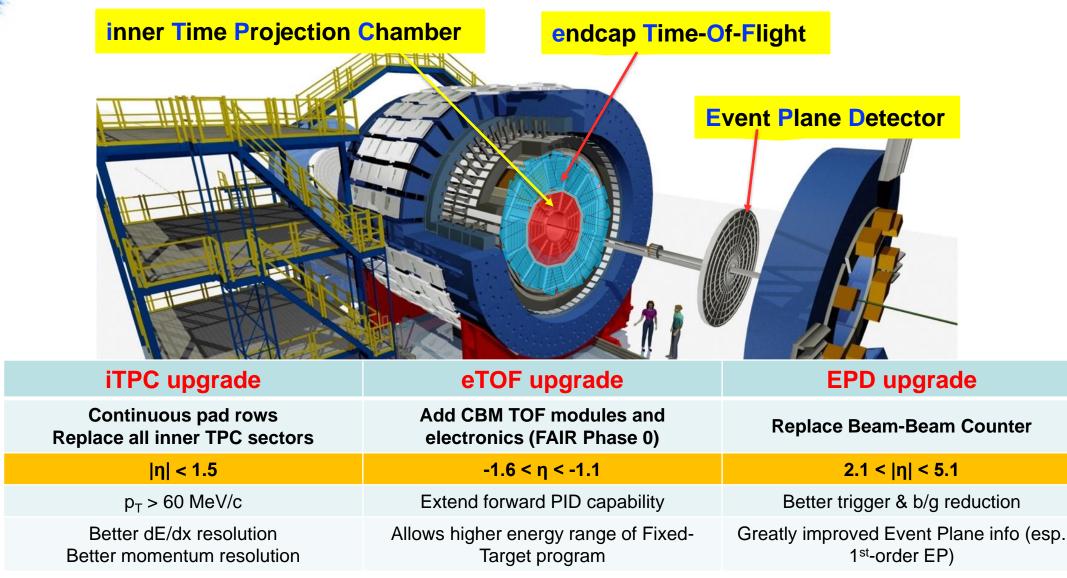
✓ Measure as fct. of Δy_p in wide range is needed to establish nature of correlation

STAR Note 644: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0644

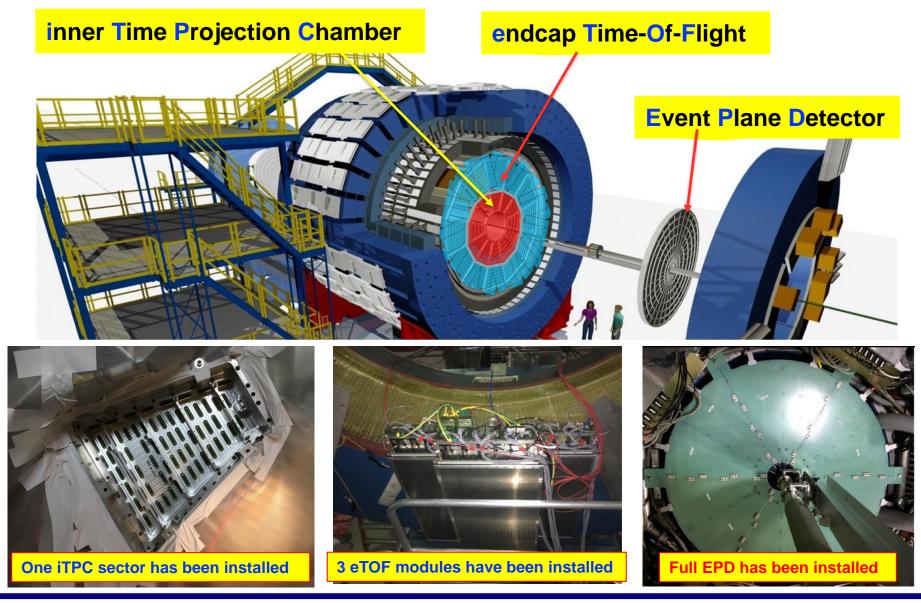
AR


Physics Motivation

- ✓ Systematically study continuum from 7.7-19.6 GeV and the effect of total baryon density on Low invariant Mass Range (LMR) excess → chiral symmetry restoration
 - \sim ~10 times more statistics, ~1/2 decrease of systematic uncertainties (improved *dE/dx*)
- \checkmark Analysis of v₁ with fine centrality binning will lead a better understanding of baryon stopping at low beam energy
 - ✓ More statistics and a better first-order event plane resolution

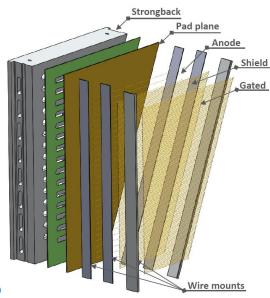


Upgrades for BES-II

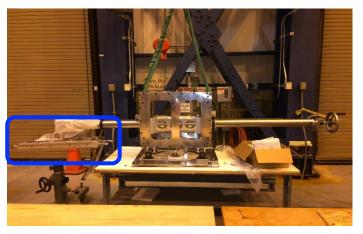


Upgrades for BES-II

Upgrades for BES-II



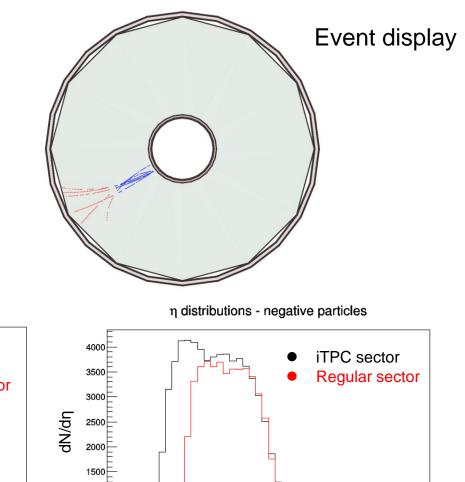
The inner TPC upgrade

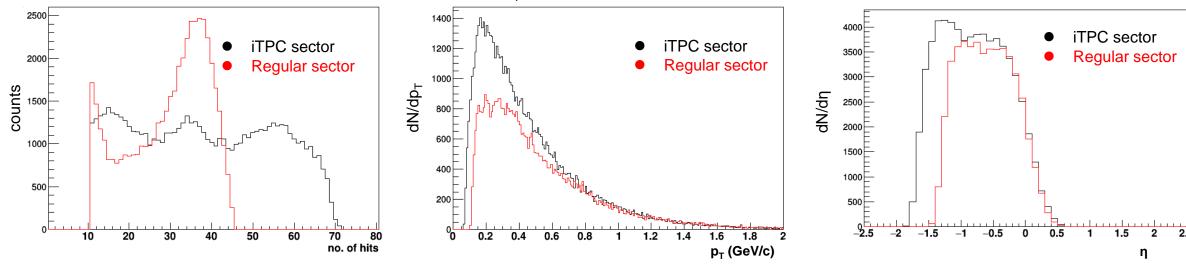

Inner Sectors

AR

- ✓ New designed strongback
- ✓ New wire frames
- ✓ Increase readout pad rows (13 to 40)
 - Coverage increased from 20% to ~100%
- New electronics for inner sectors
 - Doubled the readout channels. Using ALICE SAMPA chip
- New designed insertion tooling
 - Removal and insertion of inner sectors
- Replace all 24 inner sectors
 - 2018: One sector has been installed at STAR
 - 70% of the MWPCs have been produced
 - Full installation in autumn 2018

iTPC Performance


Excellent performance in bench test for MWPC: [NIM A 896 (2018) 90]

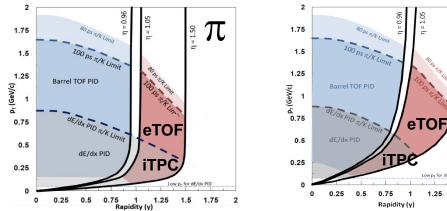

- ✓ Gas gain uniformity < 1.5% (RMS) & Energy resolution is < 20% (FWMH)
- ✓ Reasonable stability under X-ray irradiation test
 - \rightarrow 500 nA leakage current without trip or any sparks

$\checkmark\,$ iTPC (one sector) performance in current isobar collisions :

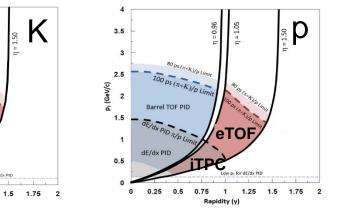
- \checkmark Maximum hits per track: 45 \rightarrow 72
- ✓ Lower transverse momentum threshold of 60 MeV/c
- ✓ η coverage extended by 0.4 units.

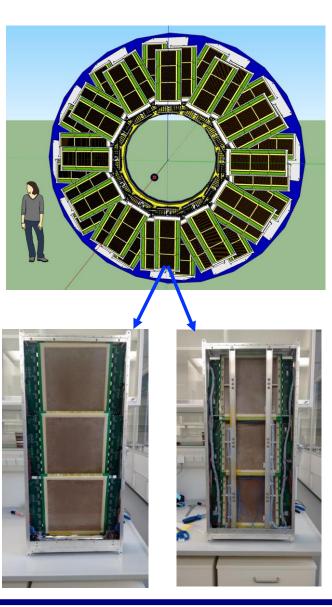
number of hits - negative particles

p_ distributions - negative particles

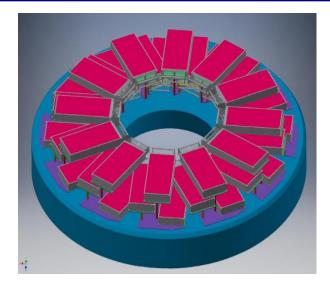


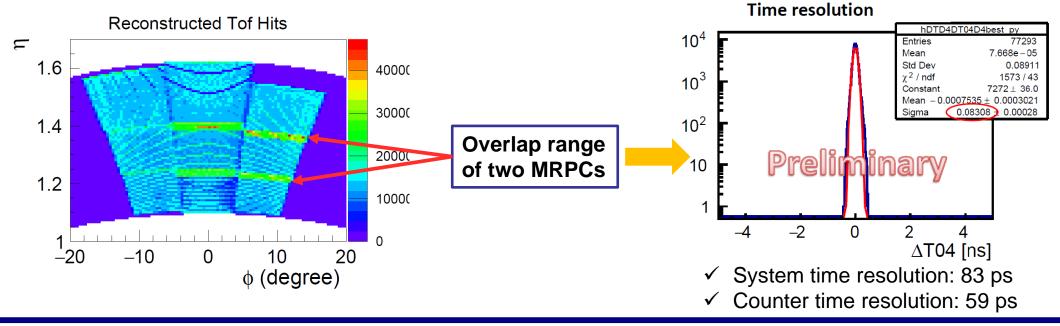
The endcap Time-Of-Flight


- Install, commission and use 10% of the CBM TOF modules at STAR
- Design concept \checkmark
 - ✓ 3 layers, 12 sectors, 36 modules, 108 MRPCs
- ✓ Provides PID in the forward direction
 - Extended rapidity and yields \checkmark
- \checkmark One sector with three modules has been installed for runs in 2018


1.25

✓ Full installation in November 2018





2018/5/15

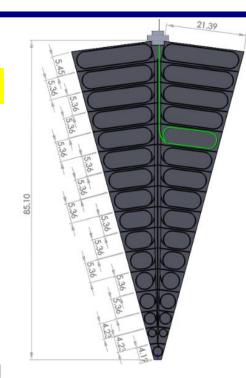
The endcap Time-Of-Flight

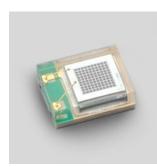
- Successfully commissioned in 2017 (one module)
 - ✓ Interface to STAR event builder & barrel TOF
- Engineering design for STAR module completed
 - ✓ Mounting scheme, HV distribution, gas system layout, etc.
- \checkmark System integration successful \rightarrow participating in data taking in 2018
 - $\checkmark~$ Reasonable $\eta\text{-}\phi$ hit distribution \rightarrow eTOF working properly
 - ✓ Time resolution 59 ps

STAR

Event Plane Detector

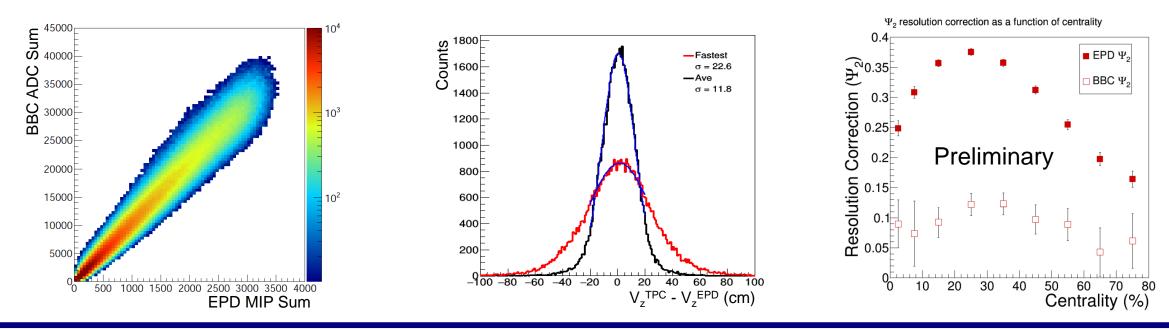
See Joseph Adams's Poster INS-01


Event Plane Detector

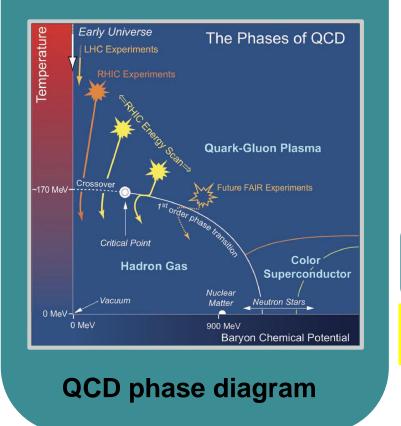

✓ 2 Wheels

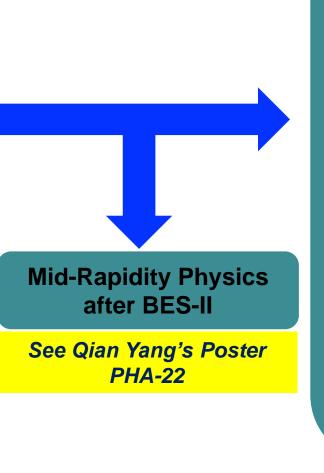
A

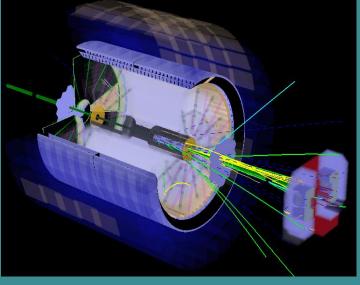
- East and West EPD (2.1 < $|\eta|$ < 5.1)
- ✓ 12 super sectors
 - Scintillator wedges, milled to form 31 tiles
 - Optically separated by epoxy
- ✓ Fiber Optics
 - Wavelength-shifting fibers
 - Grouped in 3D-printed connectors
- ✓ Sensors
 - Silicon Photon Multiplier (SiPM)



- ✓ Measure current in SiPM using Strontium source
 - \checkmark Tile uniformity within 2%, cross-talk less than 1%
- ✓ All 744 tiles are good
- $\checkmark\,$ Good correlation between BBC and EPD \rightarrow correct timing
- ✓ Timing resolution is about 0.75 ns with fastest TAC method
 - $\checkmark~$ 0.35 ns with average TAC method, Raw slewing correction


See Justin Ewigleben's Poster INS-11 and Issac Upsal's poster COL-32


✓ The second-order event plane resolution is 0.37 in 20-30% centrality events at top energy isobar collisions

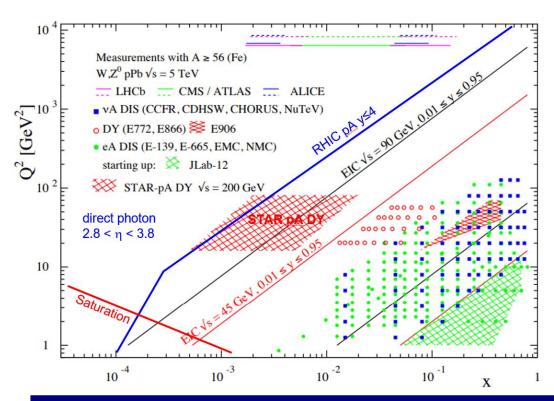

Looking Forward

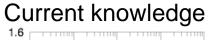
Beam Energy Scan II Program

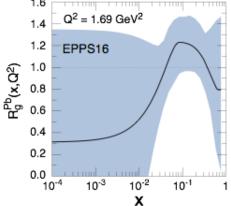
2021+ Forward Physics See Li Yi's Poster INS-38 ✓ Forward Tracking System ✓ Forward Calorimeter System

A Tale of Initial State: Nucleon to Nuclei

STAR Note 598 : <u>https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598</u>

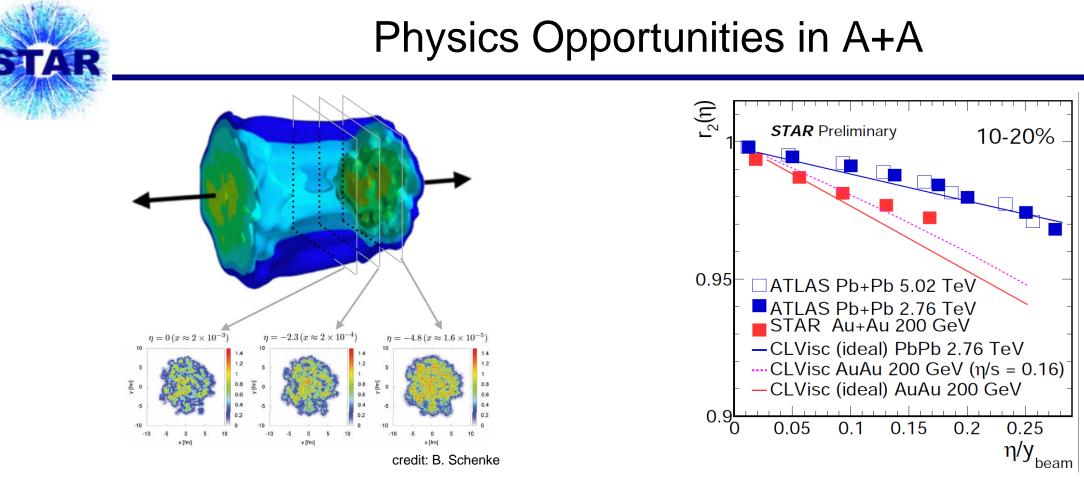

[STAR Note 669: <u>https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669</u>]


STAR



Unique Kinematic Coverage in p+A Collisions at RHIC

- What are the nPDFs at low-x?
- ✓ How saturated is the initial state of the nucleus?
- ✓ What is the spatial transverse distribution of nucleons and gluons?
 - ✓ How much does the spatial distribution?
 - ✓ Fluctuate ? Lumpiness, hot-spots etc.



- ✓ Can measure nPDF in a x-Q² region where nuclear effects are large
 - $Q^2 > Q_s^2$ over a wide range in x
 - Observables free of final state effects

Gluons: R_{pA} for direct photons

Sea-quarks: R_{pA} for DY

- Scan A-dependence prediction by saturation models
- Access saturation regime at forward rapidity
- ✓ FTS and FCS are required for these physics

- ✓ Studying the correlation at forward rapidity will constrain the longitudinal structure of initial conditions
- ✓ Discern different scenarios of vorticity by Lambda global polarization vs rapidity
- ✓ Probe small x PDF with forward jets and forward-backward jet correlations
- ✓ Forward jet quenching and QGP tomography

See Maowu Nie's talk

#332, May 15 19:10

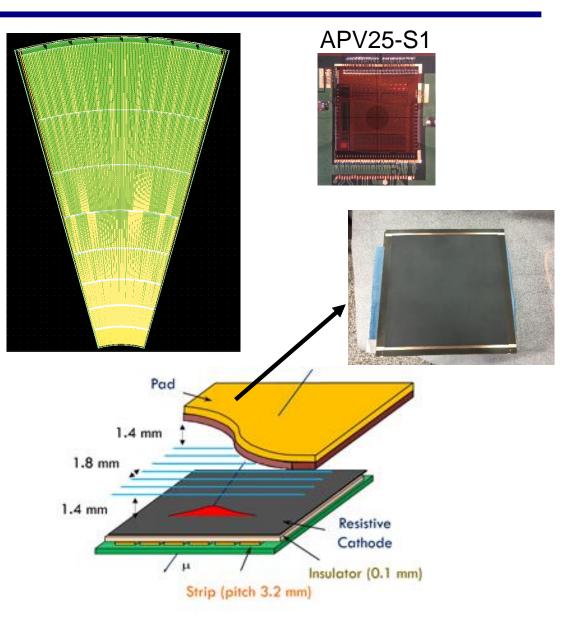
Forward Tracking System

The Forward Tracking System ($2.5 < \eta < 4.0$):

- ✓ 3 layers of silicon mini-strip disk
 - \rightarrow granularity: fine in φ and coarse in r direction
 - \rightarrow successful experience of STAR Intermediate Silicon Tracker (IST) detector.
- ✓ 4 layers of Small-Strip Thin Gap Chamber (sTGC) wheel
 - \rightarrow significant reduction of the project cost
 - \rightarrow maintaining the good momentum resolution
 - \rightarrow possible reuse of STAR TPC electronics for readout
- ✓ Low material budget in detector acceptance

The minimum detector requirements

Detector	p+p and p+A	A+A
FTS	Charge separation	0.2 <p<sub>T <2 GeV/c with 20- 30% p_T resolution</p<sub>


Forward Tracking System

Silicon disks:

- ✓ Single-sided double-metal Silicon Mini-strip sensors
 - \rightarrow under development
- $\checkmark~$ Several different frontend chips, APV25-S1 chip \rightarrow IST
- $\checkmark~$ IST DAQ system for FTS if using APV25-S1
- $\checkmark\,$ Replicating the STAR IST cooling system to cool the FTS

sTGC:

- ✓ Position resolution ~ 100 μm
- ✓ Material budget: ~ 0.5% per layer, two layers each disk.
- ✓ 1st sTGC prototype for STAR to be made at SDU in 2018
 - 1/4 size of ATLAS sTGC
 - 60 cm x 60 cm module with 2 layers
 - Strip of 30 cm each

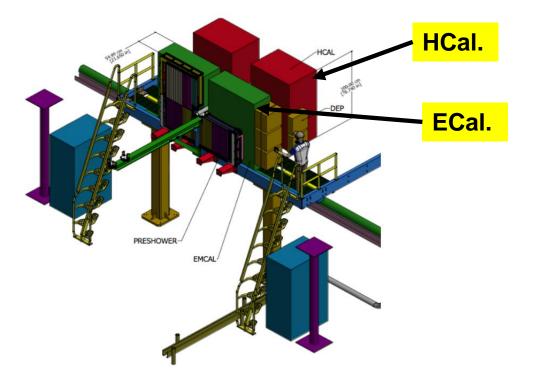
Forward Calorimeter System

The Forward Calorimeter System (2.5 < η < 4.0):

Intensive R&D work on both ElectroMagnetic Calorimeter (ECal) and Hadron Calorimeter (HCal) as part of STAR and

EIC Detector R&D

- \rightarrow several beam test and STAR in situ tests
- \rightarrow system optimized for cost and performance


Ecal:

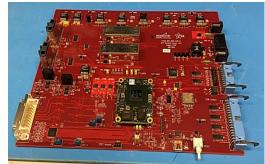
- Reuse PHENIX PbSC calorimeter
- With new readout on front instead of W/ScFi SPACAL
- Significant cost reduction
- Uncompensated calorimeter system

Hcal:

• Sandwich iron-scintillator plate sampling calorimeter.

The minimum detector requirements

Detecotor	p+p and p+A	A+A
ECal	~10%/√E	~20%/√E
HCal	~60%/√E	



Forward Calorimeter System

- ✓ Test FCS' ECal in STAR at 2017
 - ✓ Sampling Calorimeter
 - ✓ FEEs
 - ✓ Sensors with help from EIC R&D
 - ✓ SiPMs, Hammamastsu 6x6 mm²
 - ✓ Digitizers
- ✓ FEEs and Detector Electronics Platform has fully integrated to STAR
- ✓ In 2018
 - ✓ Large scale ECal prototype
 - \checkmark 2nd iteration of FEEs and DEP
 - ✓ HCal towers

Summary

- BES-II related detector upgrades show excellent progress
 - iTPC one sector installed. 70% MWPCs produced, good performance (number of maximum hits, lower p_T threshold and extended in η)
 - ✓ EPD fully installed. The second order event plane resolution is 0.37 in isobar collisions in 20-30% centrality events, timing resolution is 0.75 ns
 - ✓ eTOF one sector installed. Engineering design completed, timing resolution is 59 ps
 - ✓ Full installation of iTPC and eTOF in autumn 2018 for the BES-II program
- STAR forward upgrade enables studying the initial state of nuclei (nPDF, saturation and a 3D map of the initial state of AA collisions)
 - ✓ sTGC prototype produced at Shandong University planned to be installed in 2019
 - ✓ Intensive R&D of Silicon sensors is ongoing at UIC&NCKU.
 - ✓ Large scale prototype calorimeter beam test planned for spring 2019 at Fermilab

Thank you !

Summary of forward pp & pA measurements

	Year	\sqrt{s}	Delivered	Scientific Goals	Observable	Required
		(GeV)	Luminosity			Upgrade
		$\mathbf{p}^{T}\mathbf{p}$	300 pb^{-1}	Subprocess driving the large	A_N for charged	Forward instrum.
		200	8 weeks	A_N at high x_F and η	hadrons and	ECal+HCal+Tracking
					flavor enhanced	
Scheduled RHIC running	\mathbf{N}				jets	
edu	2023	p [⊺] Au	1.8 pb ⁻¹	What is the nature of the	R_{pAu} direct	
llec	N	@	8 weeks	initial state and hadronization	photons and DY	Forward instrum.
1 R	0	200		in nuclear collisions		ECal+Hcal+Tracking
H						
C .	Õ			Clear signatures for	Dihadrons, γ-jet,	
	Ň	T		Saturation	h-jet, diffraction	
Ξ.	2025	$p^{T}Al$	12.6 pb ⁻¹	A-dependence of nPDF,	R_{pAl} : direct	Forward instrum.
gu		@ 200	8 weeks	A-dependence for Saturation	photons and DY	ECal+HCal+Tracking
					Dihadrons, γ-jet,	
					h-jet, diffraction	
	2021	$\mathbf{p}^{T}\mathbf{p}$	1.1 fb^{-1}	TMDs at low and high <i>x</i>	A_{UT} for Collins	Forward instrum.
Ē		510	10 weeks		observables, i.e.	ECal+HCal+Tracking
tt P					hadron in jet	
e r					modulations at η	
Potential ure runn					> 1	
Potential future running	2021	p →p@	1.1fb^{-1}	$\Delta g(x)$ at small x	A_{LL} for jets, di-	Forward instrum.
00		510	10 weeks		jets, h/γ-jets	ECal+HCal
					at $\eta > 1$	

Physics Measurements		Longitudinal de-correlation		Mixed flow	DUL	Event Shape
Detectors	Acceptance	$C_n(\mathcal{A}\boldsymbol{\eta})$ $r_n(\boldsymbol{\eta}_{ab}\boldsymbol{\eta}_b)$	7/s(T)	Harmonics <i>C_{m,n,m+n}</i>	Ridge	and Jet- studies
Forward Calorimeter (FCS)	$-2.5 > \eta > -4.2 E_T$ (photons, hadrons)	One of these		One of these detectors necessary	Good to have	One of these detectors needed
Forward Tracking System (FTS)	$-2.5 > \eta > -4.2$ (charged particles)	detectors necessary	Important		Important	