

Exploring jet profiles in Pb-Pb collisions at 5.02 TeV with the ALICE detector

Ritsuya Hosokawa for the ALICE collaboration

University of Tsukuba - TCHoU, Japan

Université Grenoble Alpes - LPSC, France

Quark Matter 2018, Venezia, Italy

13-19 May 2018

Jets – powerful probes of QGP properties

Jet

- Collimated high-momentum particle spray which originate from initial hard scattered partons at the early stage of a collision (Q² > 1 (GeV/c)²)
- → The most direct experimental access to partons

Di-Jet event candidate in Pb-Pb collisions $v_{S_{NN}} = 5.02 \text{ TeV} (2015)$ Triggered by the L1-Jet trigger

Jets – powerful probes of QGP properties

Jet

- Collimated high-momentum particle spray which originate from initial hard scattered partons at the early stage of a collision (Q² > 1 (GeV/c)²)
- → The most direct experimental access to partons

- What are the advantages?
 - The QGP life time is very short (~10⁻²³ s)
 - Self produced probes like jets are suitable to probe QGP properties
- The elementary process is well described theoretically, and experimental measurement techniques are also well established

[•] Well calibrated probes

Di-Jet event candidate in Pb-Pb collisions $v_{S_{NN}} = 5.02$ TeV (2015) Triggered by the L1-Jet trigger

Jets – powerful probes of QGP properties

Jet
> Collimated high-momentum particle spray which originate from initial hard scattered partons at the early stage of a collision (Q² > 1 (GeV/c)²)
> The most direct experimental access to partons

What are the goals?

- Partons interact with the medium while traversing it and jet properties (Yield, shape...) will be modified
 - Collisional energy loss
 - Radiative energy loss

Jet quenching

are also well established

Well calibrated probes

Di-Jet event candidate in Pb-Pb collisions $v_{S_{NN}} = 5.02$ TeV (2015) Triggered by the L1-Jet trigger

Probing jet suppression rate and jet radial profile

Nuclear modification factor (R_{AA})
Quantifies the jet suppression due to parton interactions with medium

 $R_{\rm AA} = \frac{dN_{\rm jets}^{\rm AA}/dp_{\rm T}}{\langle N_{\rm coll} \rangle dN_{\rm jets}^{\rm pp}/dp_{\rm T}} = \frac{dN_{\rm jets}^{\rm AA}/dp_{\rm T}}{\langle T_{AA} \rangle d\sigma_{\rm jets}^{\rm pp}/dp_{\rm T}}$

Cross section ratio

Sensitive to the jet radial profile

- Jet collimation/broadening
 - ➢ Collimation
 - ightarrow The ratio will be increased
 - Broadening
 - ightarrow The ratio will be decreased

Jet measurement at ALICE

Acceptance: $0 < \varphi < 2\pi$, $|\eta| < 0.9$

2. FMD, T0, V0 3. TPC 4. TRD

5. TOF 6. HMPID 7. EMCal

DCal PHOS, CPV 10. L3 Magne 11. Absorber Muon Tracker 13 Muon Wall

14. Muon Trigger

16. PMD

17. AD 18. ZDC 19. ACORDE

15. Dipole Magnet

Overview of the analysis

➢ Raw jet spectra

- Event samples: 68 M(Charged jets, 0-80%), 4.5 M(Full jets, 0-10%) Minimum bias events of Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV
- \blacktriangleright Reconstructed by anti- k_{T} algorithm, R=0.2 and 0.3, p_{T} -scheme
- > Combinatorial backgrounds are suppressed by leading charged track requirement ($p_T > 5 \text{ GeV}/c$)

Background subtraction

- Event-by-event background density estimation and subtraction
 - Charged jets : JHEP 30 (2014) 013
 - Full jets : Phys. Lett. B 746 (2015) 1

Measured spectra are corrected by SVD unfolding method

- Charged jets
 - > Detector response : Pythia8+Geant3 full MC detector simulation
 - Background fluctuation : Random cone method
- ➢ Full jets
 - Embedding pythia events into Pb-Pb data

Charged jet cross section in pp vs POWHEG

Measured charged jet cross sections are well described by POWHEG+Pythia8 prediction (NLO pQCD + parton shower, hadronization)

POWHEG-BOX: JHEP 1006 (2010) 043, JHEP 1104 (2011) 081 Pythia8: Comput. Phys.Commun. 191 (2015) 159

Inclusive charged jet spectra in Pb-Pb 5.02 TeV

- 4 centrality classes (0-10%, 10-30%, 30-50%, 50-80%)
- 2 jet cone radii (R=0.2, 0.3)
- pp reference: POWHEG+Pythia8

13-19 May 2018

- \succ R_{AA} increases for more peripheral events
 - R_{AA} of different cone radius jet are consistent within systematic errors

is observed in central

Pb-Pb collisions

> pp data at the same beam energy in ALICE been analyzed

10

Inclusive charged jet R_{AA} in Pb-Pb 5.02 TeV

Inclusive charged jet cross section ratios in Pb-Pb 5.02 TeV

Ratios of charged jet cross section between R=0.2 and R=0.3 are measured for each centrality classes

No significant difference with jets in vacuum (POWHEG+PYTHIA8 reference)

> Small difference at low p_{T} in central collisions \rightarrow Hints for stronger broadening at low p_{T}

Inclusive full jet spectra in Pb-Pb 5.02 TeV

R = 0.2

R = 0.3

Measured for the most central collisions (0-10%)

- ➤ 2 jet cone radii (R=0.2, 0.3)
- ➢ pp reference: POWHEG+Pythia8

Poster: JET-21, James Mulligan

Inclusive full jet R_{AA} in Pb-Pb 5.02 TeV

R = 0.2

ALI-PREL-147158

- Full jet nuclear modification factors in the most central collision (0-10%) are measured for R=0.2, 0.3
- Strong jet suppression is observed in central Pb-Pb collisions
- Consistent with charged jet results

13-19 May 2018

Quark Matter 2018

Poster: JET-21, James Mulligan

Inclusive full jet cross section ratio in Pb-Pb 5.02 TeV

ALI-PREL-147166

- Ratios of full jet cross section between R=0.2 and R=0.3 are measured for the most central collisions (0-10%)
- Consistent with the POWHEG+PYTHIA8 reference at the measured kinematic range

Poster: JET-21, James Mulligan

Comparison between charged and full jets at 5.02 TeV and 2.76 TeV

Full and charged jet R_{AA} is consistent

- > Measured R_{AA} are similar in the two collision energies
 - It suggests effect of flattening of the spectrum in higher collision energy is compensated by stronger jet suppression

> All measurements are consistent within errors

Comparison with model prediction - Cross section ratio

ALI-PREL-159657

No significant difference with vacuum is predicted by JEWEL for the measured kinematic range

JEWEL predictions agree with data

JEWEL : arXiv:1212.1599, arXiv:1311.0048, parameters for the medium model are taken from arXiv:1707.01539

13-19 May 2018

Comparison with D⁰-tagged jets

Talk: "Measurements of heavy-flavour correlations and jets with ALICE at the LHC" Barbara Antonina Trzeciak, 15/May

Summary and outlook

ALICE successfully measured charged and full jet spectra in Pb-Pb collisions at Vs_{NN} = 5.02 TeV for jet cone radii R=0.2 and 0.3 Large background in heavy-ion collisions is under control

> Nuclear modification factor (R_{AA})

Strong jet suppression is observed in central Pb-Pb collisions

- Centrality dependence is observed for charged jets
- ➢ Jet cross section ratio (R=0.2/R=0.3)
 - > Full jets: No significant difference with jets in vacuum at measured p_{T} range
 - Charged jets: Consistent with no energy redistribution relative to vacuum
 - \succ Hints for stronger broadening at low p_{T}

➢ Prospects

- Nuclear modification factor with measured pp reference
 - Systematics in experimental data points will be reduced
- Improvement of statistical precision with calorimeter triggered data
- \succ Extending the range to higher *R* and lower jet p_{T}
- ALICE jet substructure program to be extended to 5.02 TeV (e.g. Jet mass, radial moment, momentum dispersion)

Thank you for your attention!

Backup

Overview of analysis flow

Background p_{T} density vs centrality

ALI-PREL-113557

13-19 May 2018

Response matrices

13-19 May 2018

0 - 10 %	30-40	40-50	50-60	60-70	70-90
	[GeV/c]	[GeV/c]	[GeV/c]	[GeV/c]	[GeV/c]
Method	4.2	4.2	4.2	4.2	4.2
delta-pT	-1.9	-1.2	-0.9	-0.9	-0.9
	5.1	4.1	3.8	2.9	2.2
FlowBias	6.4	5.2	4.6	3.7	3.3
MeasuredPtRange	-3.2	-0.2	-1.2	-2.4	-3.0
	0.1	0.3	2.1	1.6	3.6
UnfoldedPtRange	-0.7	0.0	-0.1	-0.2	-0.4
	0.1	0.3	0.5	0.0	0.3
RegParameter	0.4	1.1	3.3	3.6	5.4
Prior	4.2	5.2	5.2	4.0	1.7
Efficiency	1.5	2.7	5.9	8.1	9.7

Systematics for full jet spectrum

orrelated uncertainti	elated uncertainties		Relative uncertainty (%) for $p_{\rm T} \in [A, B]$ GeV					
	[40, 50]	[50, 60]	[60, 70]	[70, 80]	[80, 100]	[100, 120]	[120, 140]	
R = 0.2								
Tracking efficiency	5.4	5.8	6.5	7.0	7.6	8.2	8.7	
Input $p_{\rm T}$ range	2.4	0.2	0.8	0.7	0.1	0.4	0.8	
Jet reco efficiency	4	3	2	2	1	1	1	
Track $p_{\rm T}$ resolution	1	1	1	1	1	1	1	
EMCal energy response	4.4	4.4	4.4	4.4	4.4	4.4	4.4	
EMCal hadronic response	4	4	4	4	4	4	4	
Total corr. uncertainty	9.3	8.9	9.1	9.5	9.8	10.2	10.7	
R = 0.3								
Tracking efficiency			9.7	10.6	9.8	8.6	7.3	
Input $p_{\rm T}$ range			1.5	2.3	1.6	0.7	0.5	
Jet reco efficiency	Jet reco efficiency		2	2	1	1	1	
Track $p_{\rm T}$ resolution			1	1	1	1	1	
EMCal energy response			4.4	4.4	4.4	4.4	4.4	
EMCal hadronic response	EMCal hadronic response		4	4	4	4	4	
Total corr. uncertainty	Total corr. uncertainty		11.7	12.6	11.7	10.6	9.5	

• Shape uncertainties

e uncertainties		Relative uncertainty (%) for $p_{\rm T} \in [A, B]$ GeV								
	[40, 50]	[50, 60]	[60, 70]	[70, 80]	[80, 100]	[100, 120]	[120, 140]			
R = 0.2										
Unfolding method	9.1	4.0	1.4	2.6	4.4	5.3	8.5			
Reg. parameter	3.9	2.8	1.4	1.2	3.5	5.5	7.1			
Prior	0.6	1.0	1.0	2.2	1.0	2.1	4.7			
Total shape uncertainty	5.7	2.9	1.3	2.1	3.3	4.6	6.9			
R = 0.3										
Unfolding method			17.5	11.1	1.9	9.1	15.1			
Reg. parameter			5.1	1.8	3.5	4.5	4.2			
Prior			2.3	2.4	1.7	0.9	2.7			
Total shape uncertainty			10.6	6.6	2.5	5.9	9.2			

13-19 May 2018

Source	Uncertainty (%)								
Jet $p_{\rm T}$ (GeV/c)	[-10,-5]	[-5,0]	[0,5]	[5,10]	[10,15]	[15,20]	[20,25]	[25,35]	
Raw Yield Extraction	18	16	15	13	13	9	12	13	
POWHEG	21	22	27	21	22	21	27	22	
R _{AA}	22	23	28	22	23	22	29	24	
D cuts	5	5	5	5	5	5	5	5	
D Track Res.	2	2	2	2	2	2	2	2	
Source		Uncertainty (%)							
Jet $p_{\rm T}$ (GeV/c)			[3,5]	[5,10]	[10,15]	[15,20]	[20,25]	[25,35]	
Unfolding			5	3	9	15	17	19	
Final Sys. Unc.			37	36	36	39	40	40	