

Energy and system dependence of nuclear modification factors of inclusive charged particles and identified light hadrons measured in p-Pb, Xe-Xe and Pb-Pb collisions with ALICE

Daiki Sekihata (Hiroshima University) for the ALICE Collaboration Quark Matter 2018 13-19 May 2018

Motivation

- Partons originating from initial hard scatterings lose their energy in the hot and dense medium, which results in suppression of high $p_{\rm T}$ hadrons.
- Light flavor particles are powerful probes to measure the suppression in a wide $p_{\rm T}$ range with high precision.
- The suppression is up to a factor of 5 in central Au-Au collisions at $\sqrt{s_{NN}}$ = 200 GeV at RHIC.
- It reaches a factor of 7-8 in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV and 5.02 TeV at LHC.
- Hadron measurements in pp are baseline for pA and AA collisions.
- Results in pA collisions allow to disentangle whether this suppression comes from initial or final state effect.
- Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV allow to study system size and geometry dependence of particle production.

Neutral meson spectra in pp at different energies

- Baseline measurements of π^0 and η meson in a wide p_T range at different energies.
- Power-law behavior at high p_{T} .
- PYTHIA 8.2 Monash 2013 shows agreement with data.
- NLO pQCD calculations overpredict π⁰ and η cross sections.

8 TeV ALICE collaboration : Eur. Phys. J. C (2018) 78:263 2.76 TeV ALICE collaboration : Eur. Phys. J. C 77 (2017) 339 7 and 0.9 TeV ALICE collaboration : Phys. Lett. B 717 (2012) 162-172

13-19 May 2018 QM2018

ALICE

Neutral meson spectra in p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

EPOS3 : Phys. Rev. C 89, 064903 (2014), K.Werner et al. VISHNU : Phys. Rev. C 95, 014906 (2017), C.Shen et al. CGC : Phys. Rev. D 88, 114020 (2013), T.Lappi et al.

- π^0 : 0.3 < p_T < 20 GeV/c
- η: 0.7 < p_T < 20 GeV/c
- Key measurement to disentangle initial/final state effects.
- EPOS3 describes the data over the entire p_{T} range for π^{0} and up to p_{T} = 4 GeV/*c* for η.
- Hydrodynamic model (VISHNU) agrees with the data at low p_T.
- NLO pQCD calculations describe the π⁰ spectrum, but fail to describe the high p_T region for η.

R_{pA} of neutral mesons and comparison with theoretical models

of the measured spectra at $\sqrt{s} = 2.76/7/8$ TeV.

 $R_{\rm pA}(p_{\rm T}) = \frac{1}{\langle T_{\rm pA} \rangle} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$

- R_{pPb} is consistent with unity at $p_T > 2$ GeV/c for π^0 and η mesons.
- Agreement with the measured R_{pPb} and CGC predictions within uncertainties.

Neutral meson spectra in Pb-Pb at 2.76 and 5.02 TeV ALICE collaboration : <u>arXiv:1803.05490</u> (Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV in 2011) ALICE $rac{\mathrm{d}^2 \mathbf{N}_{x^o}}{p_{\mathrm{T}} \mathrm{d} p_{\mathrm{T}} \mathrm{d} y}$ (GeV/c)⁻² (GeV/c)⁻² (GeV/*c*)⁻² 10^{3} $\eta \rightarrow \gamma \gamma$ Pb–Pb, $\sqrt{s_{_{\rm NN}}} = 2.76 \text{ TeV}$ $\rightarrow \gamma \gamma$ ALICE Preliminary Pb-Pb at $\sqrt{s_{\text{NN}}} = 5.02 \text{ Te}$ Pb–Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 10⁴ π⁰: 0-10 % × 2⁴ 10² • 0-10% • 0–10% π^0 : 10-20 % imes 2³ 20-50% 20-50% þ π^0 : 20-40 % $\times 2^2$ ···· fits to Pb-Pb (p_dp ···· fits to Pb-Pb $d^2 N_\eta$ • π^0 : 40-60 % × 2¹ • π^0 : 60-80 % × 2⁰ ď ⁰ الم --- TCM fits to Pb-Pb _I≷10⁻² **ລັ** 10 ង្រ 10 10 10 10 10-10 10^{-5} 10^{-t} 10-5 10 10^{-6} 10^{-6} 10-8 pp at $\sqrt{s} = 5.02 \text{ TeV}$ 10^{-7} 10^{-7} \bullet π^0 10 --- TCM fit to pp 10 pp, √s = 2.76 TeV pp, √*s* = 2.76 TeV 10^{-8} * ... ★ EPJC 77 (2017) 339 ★ EPJC 77 (2017) 339 10^{-10} 10^{-9} 10 3 4 5 6 7 10 20 30 3×10⁻ 20 30 $3 \times 10^{\circ}$ 3 567 10 3×10⁻¹ 3 4 5 6 7 10 20 30 2 *p*_(GeV/*c*) *p*_(GeV/*c*) p₁ (GeV/c) ALI-PUB-143632 ALI-PUB-143628

- π^0 and η : 1 < p_T < 20 GeV/*c* in Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV with centrality triggers.
- π^{0} : 0.4 < p_{T} < 30 GeV/*c* in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV.

13-19 May 2018 QM2018

η/π^0 ratio and m_T scaling at different energies and systems

- In pp and p-Pb, a universal shape, independent of collision energy.
- In Pb-Pb, a hint of deviations from behavior in pp is observed at intermediate p_{T} .
- η/π^0 ratio reaches ~0.48 at high p_T .
- $m_{\rm T}$ scaling overestimates η/π^0 ratio at low $p_{\rm T}$.

 $\rightarrow m_T$ scaling violation at low p_T emphasizes importance of precise measurements of all neutral mesons which is needed for cocktail simulations used in several measurements. (direct photons, dileptons e.t.c.)

Charged particles spectra in Pb-Pb at 2.76 and 5.02 TeV

- ALICE collaboration : arXiv:1802.09145 ALICE
 - 0.15 < p_T < 50 GeV/*c* at mid-rapidity.
 - Thanks to better understanding of tracking efficiency correction, systematic uncertainties are reduced.

Ratio of charged particles spectra 5.02/2.76 TeV

ALICE collaboration : arXiv:1802.09145

- p_{T} spectra at higher collision energy are significantly harder for both Pb-Pb and pp collisions.
- Similar energy dependence of the shape of the ratio in peripheral Pb-Pb and in pp collisions.
- Smaller ratio towards central Pb-Pb collisions.

R_{AA} of charged particles at 2.76 and 5.02 TeV

ALICE collaboration : arXiv:1802.09145

- Strong centrality dependence.
- Similar R_{AA} for the two collision energies, but harder p_T slope at higher collision energy.
- \rightarrow Larger energy loss at higher collision energy.
- Strongest suppression by a factor of about 8 at $p_T = 6-7$ GeV/c in the most central collisions (0-5%).
- The suppression is about 30% for the intermediate $p_{\rm T}$ and reaches unity for the highest $p_{\rm T}$ bin in peripheral collisions (70-80%).

Comparison with theoretical models

13-19 May 2018 QM2018

Comparison of $\pi^0 R_{AA}$ at 2.76 and 5.02 TeV

 Well defined fragmentation function for an identified hadron, compared to inclusive charged particles.

Strong centrality dependence.

• Similar R_{AA} for the two collision energies.

ALICE collaboration : Eur. Phys. J. C (2014) 74:3108

ALICE collaboration :

13-19 May 2018 QM2018

R_{AA} of π^0 with theoretical models

 The predictions by both Djordjevic et al. and Vitev et al. describe the data in all centrality classes.

Djordjevic et al. : Phys. Rev. C 94, 044908 (2016) arXiv:1805.03494: Energy loss in evolving finite-size QGP

Vitev et al.: Phys. Rev. D 93, 074030 (2016): Soft-Collinear effective theory for jet propagation in matter.

13-19 May 2018 QM2018

 R_{AA} and R_{pA} of charged particles and π^0

- R_{pPb} exhibits a maximum for $2 < p_T < 6$ GeV/*c* (Cronin peak).
- R_{pPb} is consistent with unity at high p_{T} .
- →This demonstrates that the strong suppression observed in central Pb-Pb collisions is related to the formation of hot and dense QCD matter.

13-19 May 2018 QM2018

Daiki Sekihata

ALICE

Charged particles spectra in ¹²⁹Xe-¹²⁹Xe at 5.44 TeV

- The pp reference at $\sqrt{s} = 5.44$ TeV is obtained by the interpolation of the measured spectra at $\sqrt{s} = 5.02$ and 7 TeV.
- The systematic uncertainty of the pp reference spectrum is dominated by the interpolation uncertainty.
 - Necessary for systematic study of system size and geometry dependence, complementary for centrality dependence in ²⁰⁸Pb-²⁰⁸Pb.

 R_{AA} in Xe-Xe at 5.44 TeV

- Strong centrality dependence.
- A minimum around $p_T = 6-7$ GeV/*c* and an almost linear rise at higher p_T .
- The strongest suppression by a factor of about 6 at the minimum in the most central collisions (0-5%).
- $R_{AA} = 0.6$ at the highest p_T bin (30-50 GeV/c) in the most central collisions.

R_{AA} in Xe-Xe and Pb-Pb vs. p_{T} at similar $dN_{ch}/d\eta$

- Similar R_{AA} in the most central Xe-Xe collisions to that in 10-20% Pb-Pb collisions over the entire p_{τ} range.
- Agreement of R_{AA} between 30-40% Xe-Xe and 40-50% Pb-Pb collisions within uncertainties.

centra	l Xe-Xe	collision
	→ •	

N_{part} centrality 236 ± 2 0-5% Xe-Xe 263 ± 4 10-20% Pb-Pb 82.2 ± 3.9 30-40% Xe-Xe 40-50% Pb-Pb 86.3±1.7

$R_{\rm AA}$ in Xe-Xe and Pb-Pb vs. d $N_{\rm ch}$ /d η

NEW

arXiv:1805.04399 **ALICE** A remarkable similarity in R_{AA} is observed between Xe-Xe collision at $\sqrt{s_{NN}} = 5.44$ TeV and Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV for $dN_{ch}/d\eta > 400$.

$<\!\!\Delta E\!\!> \propto \varepsilon \ge L^2 \propto <\!\!\mathrm{d}N_{\rm ch}/\mathrm{d}\eta\!\!>\!\!/A_{\rm T} \ge L^2$

 ΔE : radiative energy loss

 ε : energy density

L : path length (related to the radius of the nucleus)

 A_{T} : initial transverse area = $\pi \times r^2$ (*r*: radius of the colliding nuclei)

Phys. Rev. C 97, 034904 arXiv:0902.2011

 \rightarrow This result can provide insight on the path length dependence of medium induced parton energy loss.

Summary

- The spectra and nuclear modification factors of primary charged particles in p-Pb, Pb-Pb and Xe-Xe collisions and neutral mesons in p-Pb, Pb-Pb collisions at different collision energies were presented.
- The strong suppression in central Pb-Pb collisions is related to the formation of hot and dense QCD matter.
- The similar suppression level is found at $\sqrt{s_{NN}}$ = 2.76 and 5.02 TeV.
- A similar R_{AA} for the same $\langle dN_{ch}/d\eta \rangle$ is found for Xe-Xe collisions at $\sqrt{s_{NN}} = 5.44$ TeV and Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV for $dN_{ch}/d\eta > 400$.

backup

N_{part} in Pb-Pb at 5.02 TeV and Xe-Xe at 5.44 TeV

TABLE I. The $\langle dN_{\rm ch}/d\eta \rangle$ and $(2/\langle N_{\rm part} \rangle) \langle dN_{\rm ch}/d\eta \rangle$ values measured in $|\eta| < 0.5$ for 11 centrality classes. The values of $\langle N_{\rm part} \rangle$ obtained with the Glauber model are also given. The errors are total uncertainties, the statistical contribution being negligible.

Centrality	$\langle dN_{ m ch}/d\eta angle$	$\langle N_{ m part} angle$	$(2/\langle N_{\rm part} \rangle) \langle dN_{\rm ch}/d\eta \rangle$
0%-2.5%	2035 ± 52	398 ± 2	10.2 ± 0.3
2.5% - 5.0%	1850 ± 55	372 ± 3	9.9 ± 0.3
5.0%-7.5%	1666 ± 48	346 ± 4	9.6 ± 0.3
7.5%-10%	1505 ± 44	320 ± 4	9.4 ± 0.3
10%-20%	1180 ± 31	263 ± 4	9.0 ± 0.3
20%-30%	786 ± 20	188 ± 3	8.4 ± 0.3
30%-40%	512 ± 15	131 ± 2	7.8 ± 0.3
40%-50%	318 ± 12	86.3 ± 1.7	7.4 ± 0.3
50%-60%	183 ± 8	53.6 ± 1.2	6.8 ± 0.3
60%-70%	96.3 ± 5.8	30.4 ± 0.8	6.3 ± 0.4
70%-80%	44.9 ± 3.4	15.6 ± 0.5	5.8 ± 0.5

Centrality	$\langle N_{ m part} angle$	$\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta angle$	$rac{2}{\langle N_{ m part} angle}\langle{ m d}N_{ m ch}/{ m d}\eta angle$	$N_{ m ch}^{ m tot}$	$\frac{2}{\langle N_{ m part} \rangle} N_{ m ch}^{ m tot}$
0–1%	246 ± 2	1302 ± 17	10.6 ± 0.2	$14700\pm\!300$	120 ± 2.6
1-2%	241 ± 2	1223 ± 25	10.1 ± 0.2	$13840\pm\!\!250$	115 ± 2.3
2-3%	236 ± 3	1166 ± 23	9.88 ± 0.23	$13250\pm\!\!280$	112 ± 2.8
3–4%	231 ± 2	1113 ± 20	9.64 ± 0.19	$12700\pm\!\!290$	110 ± 2.7
4–5%	225 ± 3	1069 ± 20	9.50 ± 0.22	$12180\pm\!\!260$	108 ± 2.7
0-2.5%	242 ± 2	1238 ± 25	10.2 ± 0.2	14100 ± 320	115 ± 4.7
2.5-5.0%	229 ± 2	1096 ± 27	9.57 ± 0.25	$12440\pm\!\!280$	109 ± 4.5
5.0–7.5%	214 ± 3	986 ± 25	9.21 ± 0.27	$11230\pm\!\!330$	104 ± 5.4
7.5–10%	199 ± 2	891 ± 24	8.95 ± 0.26	$10300\pm\!300$	103 ± 5.0
0–5%	236 ± 2	1167 ± 26	9.89 ± 0.24	$13230\pm\!\!280$	112 ± 2.6
5-10%	207 ± 3	939 ± 24	9.07 ± 0.27	10820 ± 280	105 ± 3.1
10–20%	165 ± 3	706 ± 17	8.56 ± 0.26	$8200\pm\!\!310$	99.4 ± 4.2
20-30%	118 ± 4	478 ± 11	8.10 ± 0.33	5670 ± 300	96.1 ± 6.0
30–40%	82.2 ± 3.9	315 ± 8	7.66 ± 0.41	3770 ± 270	91.7 ± 7.9
40–50%	54.6 ± 3.6	198 ± 5	7.25 ± 0.51	$2460\pm\!\!220$	90.1 ± 10
50-60%	34.1 ± 3.0	118 ± 3	6.92 ± 0.63	1480 ± 170	86.8 ± 13
60–70%	19.7 ± 2.1	64.7 ± 2.0	6.57 ± 0.73	$828\pm\!44$	84.1 ± 10
70–80%	10.5 ± 1.1	32.0 ± 1.3	6.10 ± 0.68	$437 \pm \! 16$	83.2 ± 9.2
80–90%	5.13 ± 0.46	13.3 ± 0.9	5.19 ± 0.58	181 ± 7.0	70.6 ± 6.9

Table 1: The $\langle dN_{ch}/d\eta \rangle$ and N_{ch}^{tot} values for different centrality classes, defined by V0 multiplicity. The errors are total uncertainties, the statistical contribution being negligible. The values of $\langle N_{part} \rangle$ obtained with the Glauber model are also reported. The errors are obtained by varying the parameters of the NBD-Glauber calculation.

ALICE collaboration : PRL 116, 222302 (2016)

ALICE_PUBLIC-2018-003

Comparison of R_{AA} of neutral mesons in Pb-Pb at 2.76 TeV with theory

ALICE collaboration : arXiv:1803.05490 ALICE

- Djordevic et al. describes the π^0 suppression in both centrality classes within uncertainties.
- WHDG predicts larger suppression for both mesons in the centrality class 20-50%.

Summary of systematic uncertainties of neutral mesons in Pb-Pb at 2.76 TeV

ALICE collaboration : arXiv:1803.05490

	PCM							
	0–10%				20–50%			
	π^{0}		η		π^0		η	
	1.1 GeV/c	5.5 GeV/c	2.5 GeV/c	5.0 GeV/c	1.1 GeV/c	5.5 GeV/c	2.5 GeV/c	5.0 GeV/c
Material budget	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Track reconstruction	2.3	2.6	6.0	6.2	1.4	2.3	7.0	9.0
Yield extraction	1.5	2.1	6.4	7.0	2.5	2.8	10.0	11.0
e^+/e^- identification	1.7	2.5	6.0	6.1	1.4	2.4	5.5	9.3
Photon reconstruction	3.7	2.1	13.7	13.6	2.1	2.2	8.0	8.6
	EMCal							
	0–10%				20–50%			
	π^{0}		η		π^{0}		η	
	7.0 GeV/c	18.5 GeV/c	7.0 GeV/ <i>c</i>	18.5 GeV/c	7.0 GeV/c	18.5 GeV/c	7.0 GeV/ <i>c</i>	18.5 GeV/c
Signal extraction	2.9	5.1	4.2	5.5	7.5	5.8	6.0	7.1
Photon identification	9.5	8.0	4.6	6.0	7.5	4.5	14.1	5.0
Energy response	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6
Material budget	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Hijing simulation	8.6	10.0	8.6	10.0	2.0	5.3	2.0	5.3
Monte Carlo input	2.0	3.0	<1	1.5	<1	<1	<1	<1
Higher mass decays	4.0	2.0	-	-	3.2	2.0	-	-

Table 2: Summary of the systematic uncertainties in percent for selected p_T regions for the PCM and EMCal analyses.

13-19 May 2018 QM2018

Neutral pion spectrum in pp at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

13-19 May 2018 QM2018

$π^0$ spectra in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

13-19 May 2018 QM2018

Comparison with theoretical models

ALICE collaboration : <u>arXiv:1802.09145</u>

• Andrés et al.

-consists of fitting a K factor defined as $K \equiv \hat{q}/2\epsilon^{3/4}$, based on the perturbative estimate, $\hat{q}_{ideal} \sim 2\epsilon^{3/4}$. The local energy density ϵ is taken from a hydrodynamical model of the medium. K factor is the only free parameter in the fitting to nuclear modification factors. Andrés et al. : Eur. Phys. J. C76 (2016) 475 Nucl. Phys. A715 (2003) 209–218

• Bianchi et al.

-pQCD-based radiative energy loss in a hydrodynamically expanding medium. High $p_{\rm T}$ hadrons arise from fragmentation of hard partons, which lose their energy prior to hadronization via interactions with the medium. Bianchi et al. : arXiv:1702.00481

Tracking efficiency of inclusive charged particles in Pb-Pb

ALICE collaboration : arXiv:1802.09145

ALICE

13-19 May 2018 QM2018

Tracking efficiency of inclusive charged particles in Xe-Xe

Identified charged particles spectra in pp at 5.02 TeV

13-19 May 2018 QM2018

Identified charged particles spectra in Pb-Pb at 5.02 TeV

R_{AA} of identified charged particles at 2.76 and 5.02 TeV

13-19 May 2018 QM2018