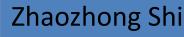
D^0 meson R_{AA} in PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV and elliptic flow in pPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV with CMS

Zhaozhong Shi


on behalf of the CMS Collaboration

Massachusetts Institute of Technology

Quark Matter 2018

05/15/2018

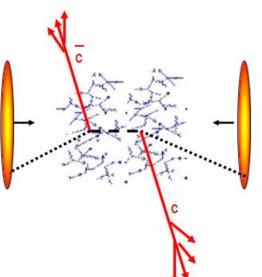
Open Heavy Flavor Physics in Relativistic Heavy Ion Collisions

Heavy quarks as hard probes to study QGP

- Heavy quarks: $m_q \sim$ O(GeV)
- ➡ Creation in the early hard scattering process. Calculable in pQCD.
- ➡ Long thermal relaxation time
- Significant fraction of energy loss when propagating through QGP
- Probe QGP by studying the energy loss mechanism

Energy loss mechanism of heavy quarks pQCD: Collisional Radiative AdS/CFT: Drag Force R1+3 E-AE AdS₅ ΔE Ε-ΔΕ String (medium) Black Hole $-\frac{dE}{dx} = \frac{4}{\pi} E_{in} \frac{x^2}{x_{stop}^2} \frac{1}{\sqrt{x^2 - x_{stop}^2}}$ $-\frac{dE}{dx} = \kappa_{coll} T^2$ $-\frac{dE}{dx} = \kappa_{rad} T^3 x$

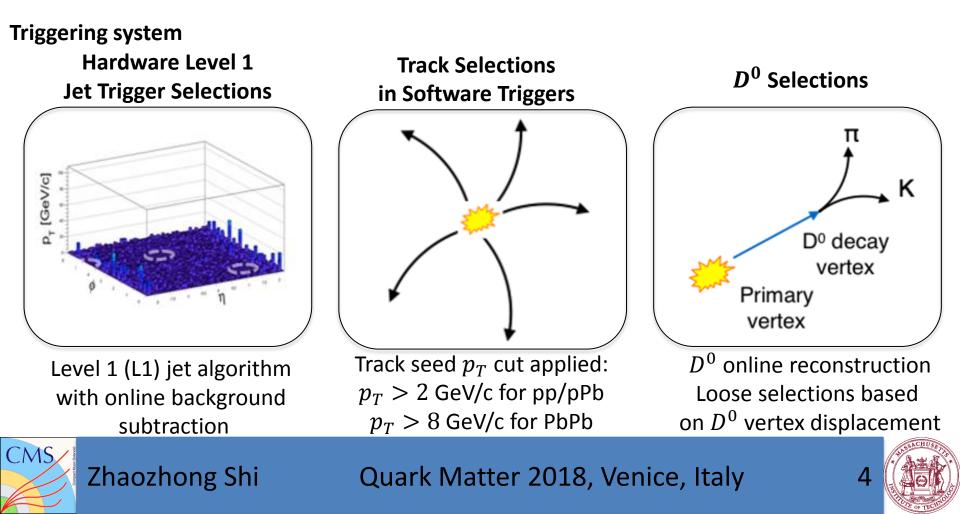
Zhaozhong Shi



Nuclear Modification Factor in Heavy Ion Collisions

- p_T spectrum and R_{AA}
- → Test the calculations of perturbative QCD in pp collisions
- ➡ Understand the QGP medium effects on heavy flavor quarks
- Relevant physics
- Flavor dependence of energy loss
- ➡ Dead cone effect [1]

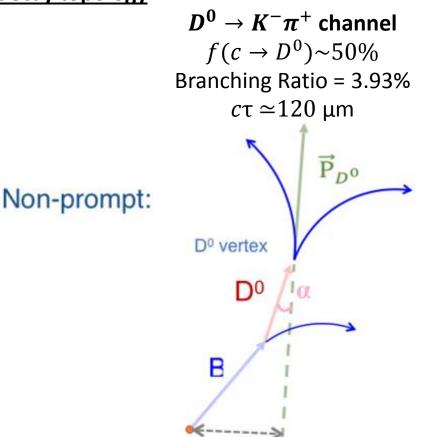
- Predictions
- \Rightarrow R_{AA} of different flavor hadrons reveals the difference in energy loss of partons


Zhaozhong Shi

The CMS Trigger and Data Sets

Data sets

- LHC Run II 2015 pp and PbPb at $\sqrt{s_{NN}}$ = 5.02 TeV and 2016 pPb data at $\sqrt{s_{NN}}$ = 8.16 TeV
- Minimum bias sample for $p_T < 20$ GeV/c and triggered samples for $p_T > 20$ GeV/c
- Dedicated HLT D meson filters to enhance the statistics of very high p_T D mesons
- High multiplicity trigger to select high multiplicity pPb events comparable to peripheral PbPb


D⁰ Reconstruction and Selections

- Primary vertex reconstruction several tracks
- D0 candidates (vertex) reconstruction pairing two tracks + kinematic fitter
- D0 candidates selection (TMVA Rectangular Cuts) decay topology
- Pointing angle (α) < ~0.12</p>
- ➡ 3D decay length (d0) significance > ~4
- ➡ Secondary vertex probability <u>> ~0.1</u>
- ➡ Distance of Closest Approach (DCA) < ~0.008 cm</p>

D⁰ vertex

Smaller D⁰ DCA

 $\vec{\mathbf{P}}_{D^0}$

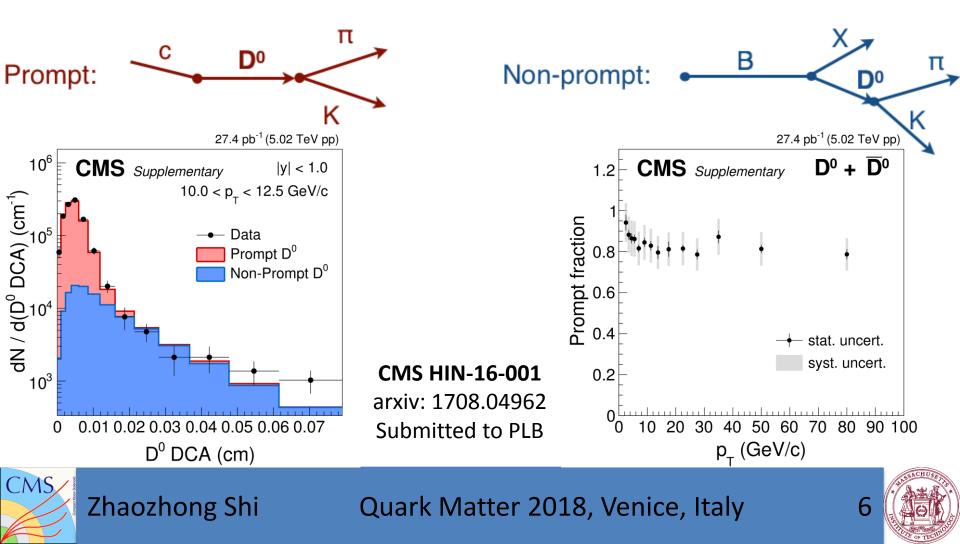
Primary vertex

Zhaozhong Shi

Prompt:

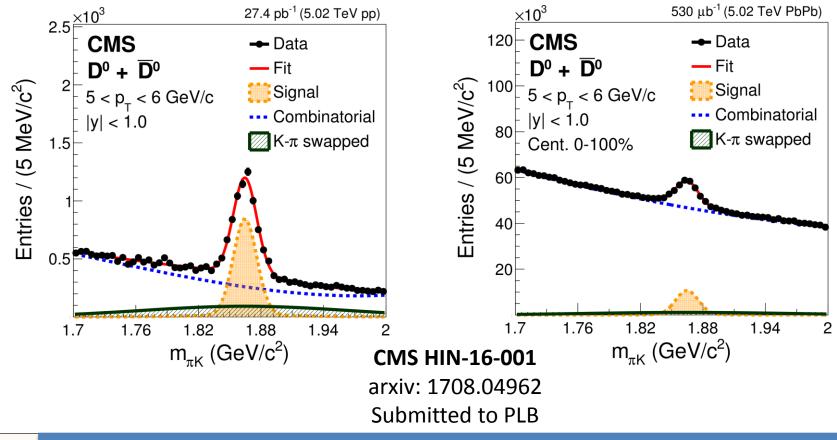
Primary vertex

CMS


Quark Matter 2018, Venice, Italy

Larger D⁰ DCA

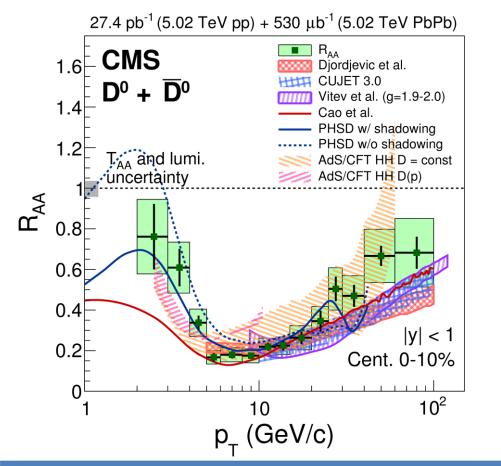
Extraction of Prompt Faction from Data


- Data-driven way to extract the prompt fraction of D^0
- Fit the DCA of the data with prompt and non-prompt D^0 DCA Monte Carlo templates
- \blacksquare Correct the to full D^0 spectrum with the prompt fractions in pp and PbPb
- Non-prompt D^0 study: Wei Xie's poster (OHF-34) and Ta-wei Wang's parallel talk

D⁰ Invariant Mass Extraction

D^0 invariant mass distributions are fitted by

- Double Gaussian (Signal)
- 3rd order polynomial (Combinatorial)
- Single Gaussian (K-π swapped: candidates with wrong mass assignment)
- Not using PID

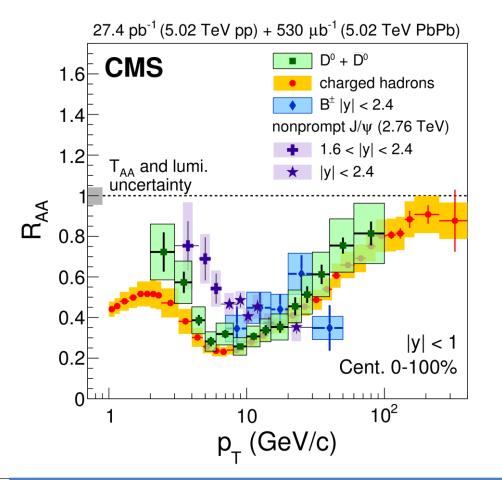


$D^0 R_{AA}$ and Comparison with Model Calculations

- Charm quarks lose a significant fraction of energy in the QGP medium
- R_{AA} minimal near $p_T \sim 10$ GeV/c and then increases
- At high p_T , both pQCD and AdS/CFT predictions reasonably agree with our R_{AA} results
- At low p_T , PHSD with shadowing describes our data better

CMS HIN-16-001

arxiv: 1708.04962 Submitted to PLB



Zhaozhong Shi

Comparison of D^0 , Charged Particles, Non-prompt J/ψ , and B Meson R_{AA}

- At low p_T , smaller suppression of D^0 and non-prompt J/ψ than charged particles
- At high p_T , the $D^0 R_{AA}$ is similar to charged particles R_{AA}
- The non-prompt $J/\psi R_{AA}$ is higher than the $D^0 R_{AA}$ for almost all p_T

CMS HIN-16-001 arxiv: 1708.04962 Submitted to PLB

Zhaozhong Shi

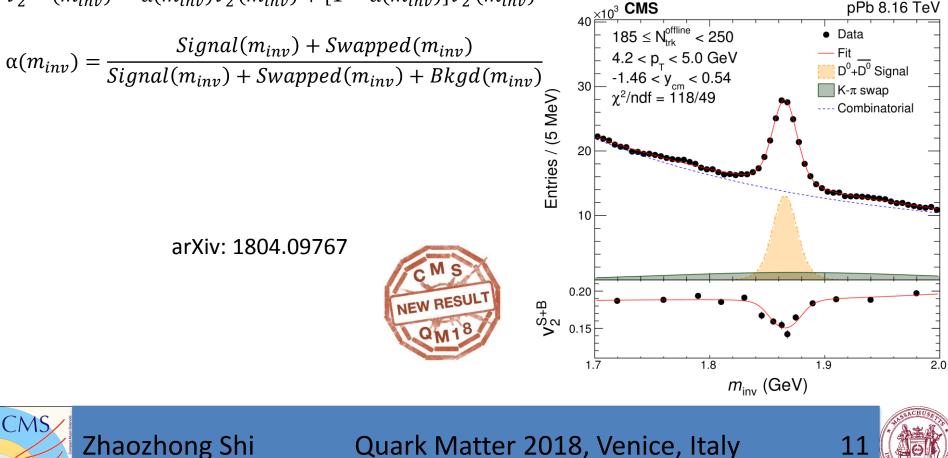
$D^0 v_2$ in pPb Collisions at 8.16 TeV

• Fourier series describing the azimuthal anisotropy of particle spectrum

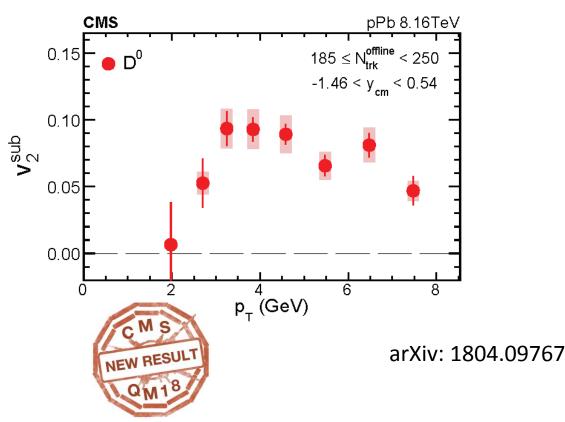
$$\frac{dN}{d\phi} \propto 1 + \sum 2\nu_n(p_T, \eta) \cos[n(\phi - \psi_n)]$$

- D^0 elliptic flow v_2 in high multiplicity pPb events
- ➡ Shed light on how much the heavy flavor quarks are coupled to a possibly hydrodynamic medium at a significantly reduced size
- Provide hints of the parton-medium interaction as an evidence of QGP in small systems

Extraction for $D^0 v_2$ Signal in pPb Analysis


- Data sample
- \rightarrow High multiplicity data sample for our v_2 analysis

• v_2^S extraction from invariant mass distribution


➡ Simultaneous fit on m_{inv} distribution and v_2 vs mass

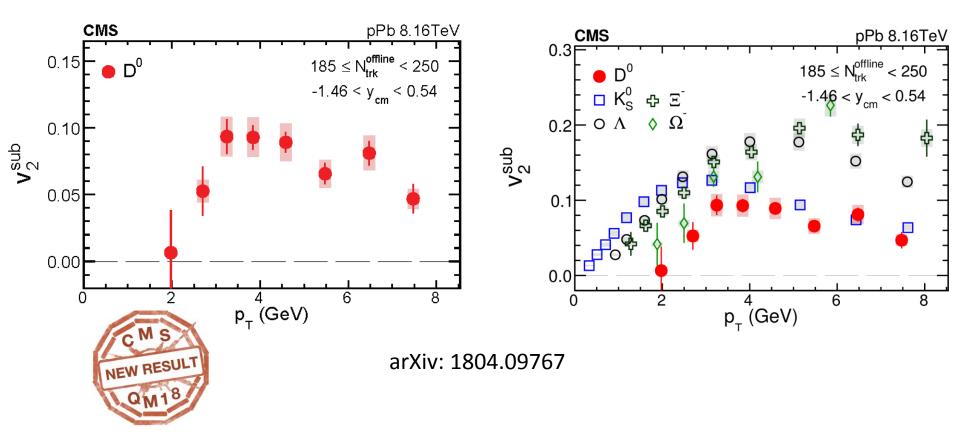
→ Determine the signal components
$$v_2^S$$

 $v_2^{S+B}(m_{inv}) = \alpha(m_{inv})v_2^S(m_{inv}) + [1 - \alpha(m_{inv})]v_2^B(m_{inv})$

Simultaneous Fits

 D^0 meson v_2 vs p_T pPb Collisions

• First measurement of $D^0 v_2$ in pPb collisions

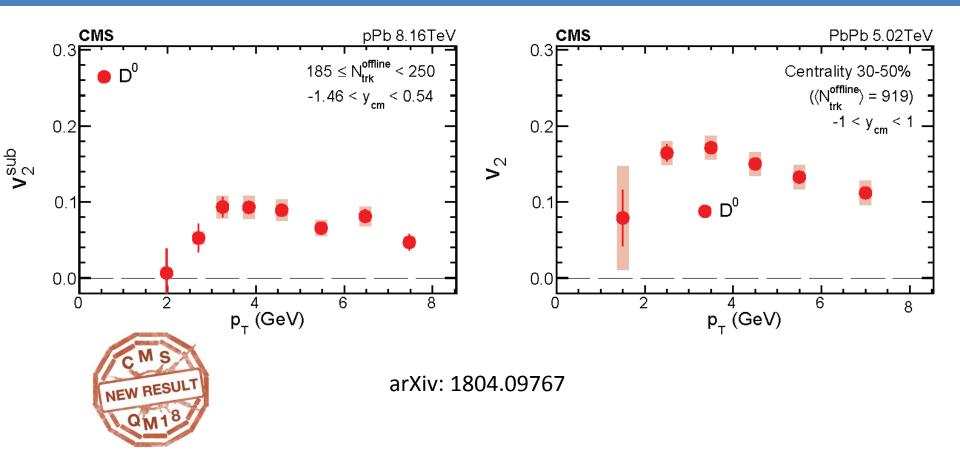

Zhaozhong Shi

CMS,

- $D^0 v_2^{sub}$ in pPb is obtained by subtracting the $V_{2\Delta}$ in low multiplicity from high multiplicity events to reduce the non-flow contributions
- Significant $D^0 v_2$ have been observed in high multiplicity pPb collisions

D^0 Meson and Light Hadrons v_2 vs p_T

• $v_2^{D^0} < v_2^{light hadrons}$

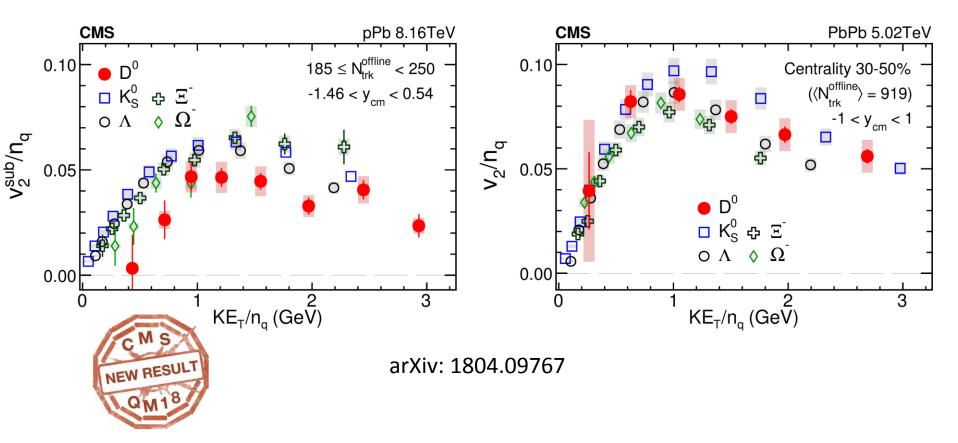

Zhaozhong Shi

CMS

• Charm quarks does not couple to the system as strongly as the light flavor quarks

D^0 Meson v_2 vs p_T and PbPb Collisions

• $D^0 v_2^{pPb} < v_2^{PbPb}$ for a given p_T


Zhaozhong Shi

CMS

Charm quarks flow in the QGP medium created in PbPb collisions

D⁰ Meson v_2/n_q vs KE_T/n_q pPb and PbPb Collisions

- Number of constituent quarks (NCQ) scaling is motivated by quark coalescence model
- Similar behavior of $D^0 v_2$ to light hadrons scaled by NCQ in PbPb

CMS

Zhaozhong Shi

• D^0 demonstrate significantly lower v_2/n_q vs KE_T/n_q compared to light hadrons in pPb

Summary and Outlook

pPb collisions

 $D^0 \ v_2$ at 8.16 TeV pPb from $D^0 o K^- \pi^+$

 \rightarrow Observation of $D^0 v_2$ in high multiplicity

 \Rightarrow First measurement of $D^0 v_2$ in pPb

- $D^0 \; R_{AA}$ at 5.02 TeV PbPb from $D^0 o K^- \pi^+$
- → Strong suppression of $D^0 R_{AA}$ is observed

→ $D^0 R_{AA}$ is similar to charge hadrons R_{AA} at high p_T and higher at low p_T

 $\rightarrow D^0 v_2$ in pPb is smaller than strange 27.4 pb⁻¹ (5.02 TeV pp) + 530 μ b⁻¹ (5.02 TeV PbPb) hadrons 1.6**⊢ CMS** $D^0 + \overline{D}^0$ CMS pPb 8.16TeV charged hadrons 1.4 0.15 $185 \le N_{trk}^{offline} < 250$ 1.2 T_{AA} and lumi. -1.46 < y_{cm} < 0.54 uncertainty В_А 0.10 v^{sub}2 0.8 0.6 0.05 0.4 |y| < 10.2 0.00 Cent. 0-10% 0 6 10² 10 p_T (GeV) $p_{_{T}}$ (GeV/c)

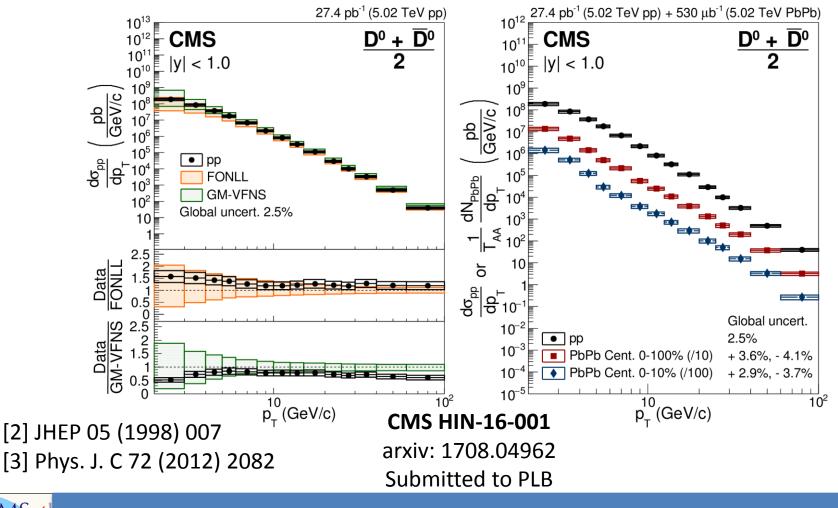
Zhaozhong Shi

Thank You

This MIT group's work was supported by US DOE-NP

Zhaozhong Shi

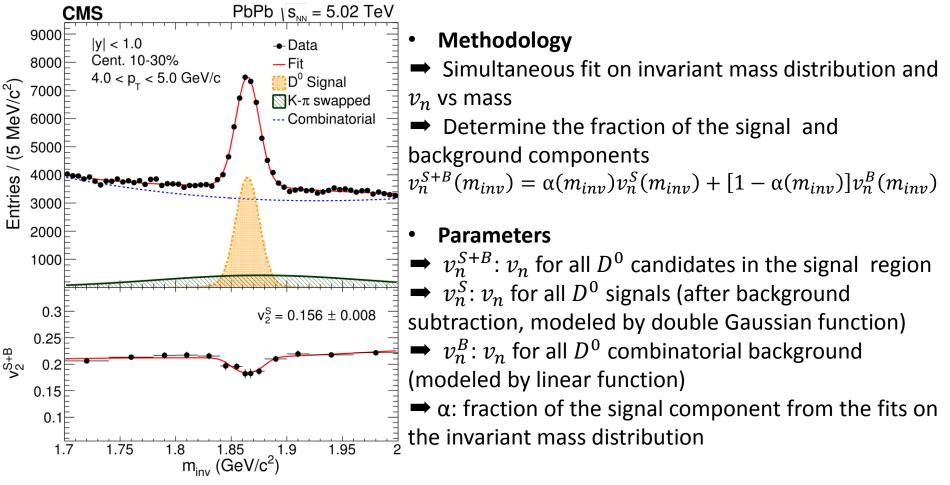
Back up



Zhaozhong Shi

Results – D^0 Differential Cross-section vs p_T in pp and PbPb Collisions

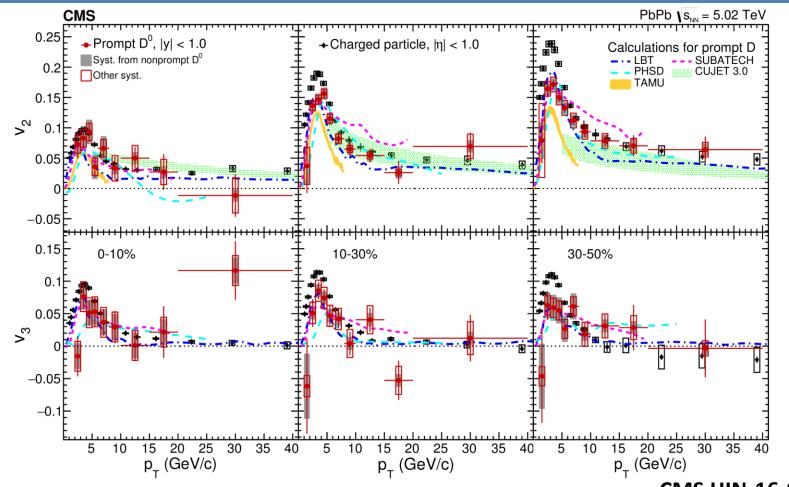
- p_T range from 2 to 100 GeV/c
- Overall consistent with FONLL [2]
- At high p_T , GM-VFNS [3] calculations overpredicts the data



Zhaozhong Shi

Plots for Flow Extractions in PbPb from the Invariant Mass Fits

- Yield extraction of v_2 is similar to the yield extract of R_{AA}
- Determination of v_2^{S+B} from the invariant mass distribution


CMS HIN-16-007 arxiv: 1708.03497 Accepted by PRL

Zhaozhong Shi

CMS

 D^0 meson v_2 and v_3 in PbPb Collisions and Comparison with Theoretical Models

CMS HIN-16-007 arxiv: 1708.03497 Accepted by PRL

- $D^0 v_2$ and v_3 are observed in PbPb collisions
- Indication of charm quarks flow in the QGP medium
- Challenge to theoretical models: must simultaneously describe R_{AA} and v_n

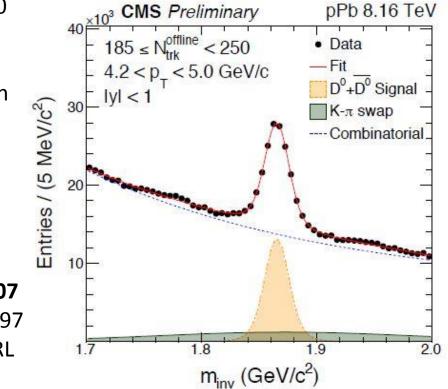
Zhaozhong Shi

CMS,

High Level Trigger in pPb v_2 Analysis

- High Multiplicity Trigger
- Dedicated trigger on high multiplicity events
- Multiplicity of pp and pPb are comparable to peripheral PbPb events

Algorithm


- Online selection of events with multiplicity > 120
- ➡ Multiplicity threshold 120 and 150 seeded with
- L1 Minimum-Bias triggers
- ➡ Multiplicity threshold 185, 250, 280 seeded with the tower count with barrel ECAL and HCAL
- Multiplicity threshold selection at HLT
- → $p_T > 0.4$ GeV/c
- \Rightarrow $|\eta| < 2.4$

CMS,

- ➡ MinSepZ_{pixel} < 0.12 m
- ➡ MinSepZ_{full} < 0.15 m

Zhaozhong Shi

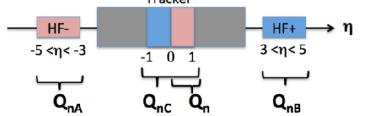
CMS HIN-16-007 arxiv: 1708.03497 Accepted by PRL

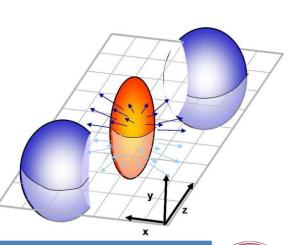
• Conclusion: we are able to obtain D^0 signal in the high multiplicity pPb data and study $D^0 v_2$

Quark Matter 2018, Venice, Italy

Invariant Mass Plot

Azimuthal Anisotropy in Heavy Ion Collisions


• Fourier series describing the azimuthal anisotropy of particle spectrum


$$F(p_T, \eta, \phi) = 1 + \sum 2\nu_n(p_T, \eta) \cos[n(\phi - \psi_n)]$$

- Event plane ψ_n is determined by the HF calorimeter $3 < |\eta| < 5$ and the tracker $|\eta| < 0.75$
- Q vector: $Q_n = \sum_M \omega_k e^{-in\phi}$
- Measure Fourier harmonics v_n with two-particle correlations method (η gap = 1.0)
- The scalar product method (η gap = 1.5) as a cross-check

$$v_n\{SP\} = \frac{\langle Q_{n,D^0} Q_{nA}^* \rangle}{\sqrt{\frac{\langle Q_{nA} Q_{nB}^* \rangle \langle Q_{nA} Q_{nC}^* \rangle}{\langle Q_{nB} Q_{nC}^* \rangle}}}$$

- $D^0 v_2$ in high multiplicity pPb events
- ➡ Shed light on how much the heavy flavor quarks are coupled to a possibly hydrodynamic medium at a significantly reduced size
- Provide hints of the parton-medium interaction as an evidence of QGP in small systems

Zhaozhong Shi

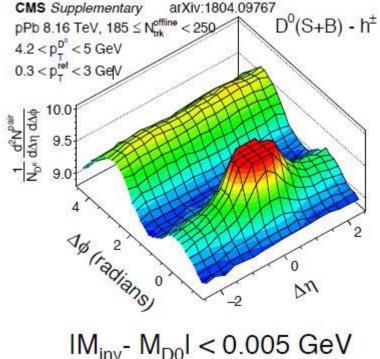
CMS

$D^0 v_2$ Cuts in pPb

- Track quality selections
- ➡ High purity track
- $\Rightarrow \frac{\Delta p}{p} < 0.1$
- nHits > 11 for pixel + strip trackers
- Topological cuts

p_T (GeV/c)	$d_0/\sigma(d_0)$	α	Vertex Probability
1.5 – 2.4	> 3.50	< 0.15	> 0.15
2.4 – 3	> 3.50	< 0.15	> 0.13
3 – 3.5	> 3.50	< 0.12	> 0.12
3.5 – 4.2	> 3.50	< 0.10	> 0.11
4.2 - 5.0	> 3.50	< 0.09	> 0.10
5.0 - 6.0	> 3.50	< 0.08	> 0.09
6.0 - 7.0	> 3.50	< 0.07	> 0.08
7.0 - 8.0	> 3.50	< 0.06	> 0.08

Zhaozhong Shi



Low Multiplicity Subtraction Technique

• Low multiplicity subtraction

$$V_{n\Delta}^{sub} = V_{n\Delta} \left(N_{trk}^{offline} > 185 \right) - V_{n\Delta} \left(N_{trk}^{offline} < 35 \right) \frac{N_{assoc} \left(N_{trk}^{offline} < 35 \right)}{N_{assoc}} \frac{Y_{jet}}{Y_{jet} \left(N_{trk}^{offline} < 35 \right)}$$

 Y_{jet} : The near-side jet yield defined as integral or near-side jet peak in the short range ($|\Delta \eta| < 1$) Projected In the 1-D $\Delta \phi$ distribution.

