

Recent Results on Cumulants of Net-Particle Distributions in Au+Au Collisions at STAR

Toshihiro Nonaka for the STAR Collaboration University of Tsukuba Central China Normal University

STAR

✓ Introduction

- Observables
- Analysis methods

Experimental results

- Net-A cumulants
- **Off-diagonal cumulants**
- Sixth-order cumulants

✓ Non-binomial efficiencies

QCD phase diagram

STAR

 Higher-order fluctuations of net-particle distributions.

- **Crossover** at $\mu_B=0$
- 1st-order phase transition at large μ_B ?
- **Critical point?**

star Higher-order fluctuation

- Moments: mean (M), standard deviation (σ), skewness (S) and kurtosis (κ). S and k are non-gaussian fluctuations.
- \checkmark \checkmark

Cumulant *⇐* **Moment** \checkmark

 $<\delta N>=N-<N>$ $C_1 = M = \langle N \rangle$ $C_2 = \sigma^2 = \langle \delta N \rangle^2 >$ $C_3 = S\sigma^3 = \langle \delta N \rangle^3 >$ $C_4 = \kappa \sigma^4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$

Moments and cumulants are mathematical measures of "shape" of a distribution

Cumulant : additivity \checkmark

 $C_n(X+Y) = C_n(X) + C_n(Y)$

proportional to volume

STAR Existing analysis methods

fluctuation.

then weighted-average these in each centrality bin.

- X.Luo, J. Xu, B. Mohanty and N. Xu. J. Phys. G40,105104(2013)

$$C_{n} = \frac{\sum_{r=N_{1}}^{N_{2}} n_{r} C_{n}^{r}}{\sum_{r=N_{1}}^{N_{2}} n_{r}} = \sum_{r=N_{1}}^{N_{2}} \omega_{r} C_{n}^{r} \qquad \omega_{r} = n$$

Efficiency correction on cumulants have been done assuming the binomial efficiencies.

- M. Kitazawa : PRC.86.024904, M. Kitazawa and M. Asakawa : PRC.86.024904
- A. Bzdak and V. Koch : PRC.86.044904, PRC.91.027901, X. Luo : PRC.91.034907
- T. Nonaka et al : PRC.94.034909, T. Nonaka, M. Kitazawa, S. Esumi : PRC.95.064912

$$B_{p,N}(n) = \frac{N!}{n!(N-n)!}p^n(1-p)^n$$

Centrality bin width averaging is done for the reduction of the initial volume

\checkmark Calculate the cumulants at each value of the multiplicity used for centrality,

N₁, N₂ : lowest and highest $n_r / \sum_{r=N_1}^{N_2} n_r$ N₁, N₂ : lowest and highest multiplicity bin in the centrality n_r : # of events in rth multiplicity n_r : # of events in rth multiplicity bin

Net-A cumulants

✓ Strange hadrons freeze-out earlier than light flavor hadrons? ✓ Net-Λ cumulants might provide additional constraints on freeze-out conditions.

Consistent with **Poisson/NBD baselines.**

\checkmark C₁ and C₂ are above **UrQMD results.**

✓ C₃ shows better agreement with UrQMD.

See N. Kulathunga, Poster #528

star Net-A cumulants

- ✓ C₂/C₁ is close to HRG results (same kinematic range) with kaon freeze-out condition, and far away from those of charge and proton.
- the HRG model.

 \checkmark The error on C₃/C₂ is presently too large to provide a meaningful constraint on

STAR The 2nd-order off-diagonal cumulants

Off-diagonal cumulants of conserved charges will provide additional constraints on the freeze-out conditions.

$$C_{x,y} = \frac{\sigma_{x,y}^{1,1}}{\sigma_y^2}$$

- A. Majumder and B. Muller, Phy. Rev. C 74 (2006)
- A. Bazavov et al. Phys. Rev. D86 (2012) 034509
- A. Chatterjee et al. J. Phys. G: Nucl. Part. Phys. 43 (2016) 125103
- Z. Yang et al. Phys. Rev. C 95 014914 (2017)

centrality and n acceptance. energy.

See A. Chatterjee, Poster #534

The 2nd-order off-diagonal cumulants

- ✓ Normalized p-k correlation is positive at low energies and negative at high energies, which are also consistent with UrQMD.
- ✓ Significant excess is observed in Q-k and **Q-p with respect to the Poisson baseline** and UrQMD.
- This excess increases with the beam energy in central collisions compared to peripheral collisions.

See A. Chatterjee, Poster #534

star Net-charge sixth-order cumulant

 \checkmark There isn't yet any direct experimental evidence for the smooth crossover at $\mu_{\rm B} \sim 0$.

Sixth-order cumulants of net-charge and net-baryon distributions are predicted to be negative if the chemical freeze-out is close enough to the phase transition.

1.2

C.Schmidt, Prog. Theor. Phys. Suppl. 186, 563–566 (2010) Cheng et al, Phys. Rev. D 79, 074505 (2009) Friman et al, Eur. Phys. J. C (2011) 71:1694

Freeze-out conditions	$\chi_4^{\rm B}/\chi_2^{\rm B}$	$\chi_6^{\rm B}/\chi_2^{\rm B}$	χ_4^Q/χ_2^Q	χ ^Q /2
HRG	1	1	~2	~10
QCD: $T^{\text{freeze}}/T_{pc} \lesssim 0.9$	$\gtrsim 1$	$\gtrsim 1$	~2	~10
QCD: $T^{\text{freeze}}/T_{pc} \simeq 1$	~0.5	<0	~1	<0
Predicted so	cenario 1	or this n	neasurer	nen

Toshihiro Nonaka, QM2018, Venice, Italy

11

star Net-charge sixth order cumulant

- \checkmark The first result of C₆/C₂ of net-charge.
- on the standard deviation. $error(C_r) \propto rac{\sigma^r}{\sqrt{N_{
 m eve}}}$
- central collisions.

See T. Sugiura, Poster #532

Net-charge has much larger errors than net-proton because the error strongly depends

 \checkmark Results of net-charge C₆/C₂ are consistent with zero within large statistical errors.

 \checkmark Negative values are observed in net-proton C₆/C₂ systematically from peripheral to

STAR Non-binomial efficiencies

Experimental effects

✓ The detector efficiency may not be binomial, which would be due to the particle misidentification, track splitting/merging effects, and many other reasons.

2. Multiplicity dependent efficiency

✓ Residual dependence of efficiency inside one multiplicity bin (for centrality) needs to be taken into account.

A. Bzdak, R. Holzmann, V. Koch : PRC.94.064907

→ One example of nonbinomial distribution, Beta-binomial, is wider distribution than binomial

STAR Non-binomial efficiencies

- We performed MC simulations by embedding protons and antiprotons, e.g., Np=60 and Npbar=15 (which would be an extreme number), and see whether those particles can be reconstructed or not.
- ✓ The response matrix is close to the beta-binomial distribution, which is wider than binomial.
 - \rightarrow "Urn model" for beta-binomial distribution, where the parameter α controls the deviation from binomial.

 N_w : white balls, N_b : black balls, ϵ : efficiency $N_w = \alpha N_p \quad \varepsilon = N_w / (N_w + N_b)$

See T. Nonaka, Poster #453

STAR Response matrices

- used for unfolding in order to reconstruct the distribution itself.

 $0.4 < p_T < 2.0$, embedding simulation

It is the deviation from binomial would depend on the # of embedded protons and antiprotons. ✓ 4-D response matrices are determined by embedding simulation, which can be directly

See T. Nonaka, Poster #453

star Results of unfolding

- ✓ For unfolding, 2.5% centrality width averaging has been done.
- ✓ Systematic suppression is observed for C₂ and C₃ with respect to the results of efficiency correction assuming binomial efficiencies.
- \checkmark C₄, C₃/C₂ and C₄/C₂ are consistent within large systematic uncertainties limited by embedding samples.

See T. Nonaka, Poster #453

- 1. Net- Λ cumulants up to 3rd-order
 - Consistent with Poisson/NBD baselines. ullet
- 2. Second-order off-diagonal cumulants
 - Q-k and Q-p correlations are in excess of the UrQMD results. •
- 3. Sixth-order cumulant of net-charge and net-proton
 - from O(4) scaling functions.
- 4. Influence of non-binomial efficiencies
 - than binomial.
 - •

• The result of C_2/C_1 is closer to those of HRG with kaon freeze-out condition rather than light flavor hadrons.

Negative value is observed (although with extremely large uncertainties) in consistency with expectations

One example of the response matrix is tested by embedding simulation, which is closer to beta-binomial

Unfolding has been applied at $\sqrt{s_{NN}}$ = 19.6 GeV in central collisions, where results show systematic suppression for C_2 and C_3 compared to the efficiency correction assuming binomial efficiencies, while C_4 , C_3/C_2 and C_4/C_2 are consistent within large systematic uncertainties limited by embedding samples.

Toshihiro Nonaka, QM2018, Venice, Italy

Thank you for your attention

Back up

defined by using different paricle species or acceptance.

• Net-proton

Net-Λ

Charged paricles excluding (anti)protons in $|\eta| < 1.0$

See : Phys. Rev. Lett. 112, 032302(2014)

✓ In order to avoid the auto-correlation, the centrality is

Off-diagonal (π, K, p)

Charged paricles excluding (anti)protons in $|\eta| > 0.5$

See : Phys. Rev. Lett. 113, 092301(2014)

STAR

Lambda is reconstructed event-by-event based on the decay topology.

Lambda reconstruction

The geometrical cuts were varied in order to obtain high pure (>90%) sample.

	Cut Set #1	Cut Set #2	Cut Set #3	Cut Set #4	Cut Set #5
DCA of V0 to PV	< 0.35	< 0.5	< 0.65	< 0.8	< 0.95
DCA of P to PV	> 0.6	> 0.5	> 0.4	> 0.3	> 0.2
DCA of pi- to PV	> 1.75	> 1.5	> 1.25	> 1.0	> 0.75
DCA of P to pi-	< 0.5	< 0.6	< 0.7	< 0.8	< 0.9
Background	3196	9819	22908	34184	82161
Signal	108654	157856	196537	213468	253431
Sig/Background	33.9969	16.0766	8.5794	6.2448	3.0845
Purity%	97.1426%	94.144%	89.5609%	86.1968%	75.5176%

STAR

STAR 2nd-order off-diagonal cumulants

Centrality dependence

See A. Chatterjee, Poster #534

STAR 2nd-order off-diagonal cumulants

<u>n acceptance dependence</u>

|η| < X

until cumulants converge.

S. Esumi *et al* : in preparation

Test with non-binomial distributions

The beta-binomial and hypergeometric distributions can be defined by the urn model, in which the parameter α controls the devitation from the binomial distribution.

N_w : white balls, N_b: black balls, ε: efficiency $N_w = \alpha N$ $\varepsilon = N_w / (N_w + N_b)$

- ✓ Smaller α for Hypergeometric distribution, becomes narrower than binomial distribution.
- ✓ Smaller α for Beta-binomial distribution, becomes wider than binomial distribution.
- ✓ Both non-binomial distributions become close to the binomial with large α.

Response matrix from embedding simulation

- the extreme number), and see whether those particles can be reconstructed or not.
- **binomial distribution.**
- ✓ More detailes can be found in the poster #453.

Embed 60 protons and 15 antiprotons into the real data (which would be)

The response matrix is wider than the binomial, and it is close to the beta-

✓ The beta-binomial distribution is wider than binomial, which can be defined by the urn model.

✓ The parameter α controls the devitation from the **binomial distribution.**

 N_w : white balls, N_b : black balls, ϵ : efficiency $N_w = \alpha N$ $\varepsilon = N_w / (N_w + N_b)$

