Quarkonium production in p-Pb collisions with ALICE

Biswarup Paul
University and INFN Torino (Italy)
On behalf of the ALICE Collaboration

Quark Matter 2018, Venice, Italy $13^{th} - 19^{th}$ May 2018

Outline

• New results on J/ ψ , ψ (2S) and Υ states in p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 and 8.16 TeV

• J/ψ results:

- $R_{\rm pPb}$ vs $p_{\rm T}$ and $Q_{\rm pPb}$ vs centrality at $\sqrt{s_{\rm NN}}$ = 5.02 TeV at mid-y [ALICE-PUBLIC-2018-007]
- R_{pPb} vs p_{T} and y and Q_{pPb} vs centrality at $\sqrt{s_{\text{NN}}} = 8.16$ TeV at forward-y New publication!! [arXiv:1805.04381, ALICE-PUBLIC-2017-007]
- Multi-differential study of J/ ψ Q_{pPb} at forward-y NEW!!
- $\psi(2S)$ results:
 - Q_{pPb} vs centrality at $\sqrt{s_{\text{NN}}} = 8.16$ TeV at forward-y NEW!!
- Y results:
 - R_{pPb} vs p_{T} and y and Q_{pPb} vs centrality at $\sqrt{s_{\text{NN}}} = 8.16$ TeV at forward-y NEW!! [ALICE-PUBLIC-2018-008]

p-Pb collisions in ALICE

- → Study pA collisions to understand Cold Nuclear Matter (CNM) effects such as nuclear parton shadowing/color glass condensate, energy loss and comovers absorption
- → No Quark-Gluon Plasma (QGP) is expected in pA collisions. So, the measurement of CNM effects in pA collisions is important to quantify the QGP effects in A-A collisions
- → Quarkonia in ALICE can be measured in two different rapidity intervals:

Central Barrel:
$$J/\psi -> e^+e^- (|y| < 0.9)$$

Forward muon arm: $J/\psi -> \mu^+\mu^- (2.5 < y < 4)$

- \rightarrow p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV
- \rightarrow ALICE data are collected with two beam configurations: p-Pb and Pb-p, with $\Delta y = +/-0.465$

Mid rapidity

Backward rapidity

Inclusive J/ψ results in p-Pb collisions

arXiv:1805.04381

ALICE-PUBLIC-2017-007

ALICE-PUBLIC-2018-007

J/ ψ R_{pPb} vs y_{cms} at $\sqrt{s_{NN}}$ = 8.16 TeV

- Stronger suppression is observed at forward rapidity, while $R_{\rm pPb}$ is compatible with unity at backward rapidity
- Results are compatible with LHCb results at the same energy
- Models based on different shadowing implementations, CGC, energy loss, transport models and comovers fairly describe the data.

J/ψ R_{pPb} and Q_{pPb} at $\sqrt{s_{NN}}$ = 8.16 TeV compared to models

 $\langle N$

• R_{pPb} shows a p_{T} dependence, with an increase from low to high p_{T} at both forward and backward rapidity

• Q_{pPb} shows a reduction from peripheral to central collisions at forward rapidity, while trend is the opposite at backward rapidity

arXiv:1805.04381

ALICE-PUBLIC-2017-007

J/ψ $R_{\rm pPb}$ and $Q_{\rm pPb}$ at $\sqrt{s_{\rm NN}}$ = 8.16 TeV compared to models

 More precise results with smaller uncertainties are able to constrain the theoretical predictions

• The models fail to describe simultaneously all aspects of J/ψ suppression (rapidity, p_T and centrality)

arXiv:1805.04381

ALICE-PUBLIC-2017-007

J/ψ R_{pPb} and Q_{pPb} at $\sqrt{s_{NN}} = 5.02$ TeV (mid-y)

- Run2 analysis with increased luminosity ($L_{int}(2016) = 256 \mu b^{-1}$, $L_{int}(2013) = 51 \mu b^{-1}$) shows increased precision
- $R_{\rm nPh}$ increases with $p_{\rm T}$
- No centrality dependence of $Q_{\rm pPb}$ is observed

J/ψ R_{pPb} and Q_{pPb} compared to theory at $\sqrt{s_{NN}} = 5.02$ TeV(mid-y)

• Theoretical models based on shadowing and/or energy loss, CGC and comovers are in fair agreement with the data

Multi-differential study of J/ ψ Q_{pPb} at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

- Clear evolution of Q_{pPb} vs p_T in different centrality classes
- At backward rapidity, enhancement in most central collisions for $p_T > 3 \text{ GeV}/c$
- At forward rapidity, stronger suppression at low $p_{\rm T}$ in most central collisions and $Q_{\rm pPb}$ is compatible with unity for $p_{\rm T} > 7~{\rm GeV}/c$ within uncertainties for all centrality intervals

Multi-differential J/ ψ Q_{pPb} compared to theoretical models

- In central collisions:
 - shadowing predicts a weaker $p_{\rm T}$ dependence w.r.t. the one observed in data
 - energy loss predicts an increase of $Q_{\rm pPb}$ with a different steepness than the measured one
- In peripheral collisions:
 both theory models show no $p_{\rm T}$ dependence, consistent with the $Q_{\rm pPb}$ measurement, within
 uncertainties

Azimuthal anisotropy (v_2) of J/ψ

- In a strongly-interacting medium, pressure gradients convert any initial spatial anisotropy into a momentum anisotropy
- Anisotropy is quantified by the 2^{nd} order coefficient v_2 of the Fourier expansion of the particle azimuthal distribution
- In Pb-Pb collisions, non-zero J/ ψ v_2 suggests charm quark participation to the collective expansion of the system

- Observation of non-zero v_2 in p-Pb for $p_T > 3 \text{ GeV}/c!$
- Total significance (forward + backward, 5.02+8.16 TeV, $3 < p_T < 6 \text{ GeV}/c$) ~ 5σ
- Values are similar as the ones obtained in Pb-Pb
- Common mechanism?

Inclusive $\psi(2S)$ results in p-Pb collisions

$\psi(2S) R_{pPb} \text{ vs } y_{cms} \text{ at } \sqrt{s_{NN}} = 8.16 \text{ TeV}$

- $\psi(2S)$ suppression is stronger than the J/ ψ , especially at backward rapidity
- Theoretical predictions based on shadowing and energy loss can not describe the stronger $\psi(2S)$ suppression
- Model including final-state effects reproduce $\psi(2S)$ behaviour also at backward rapidity

$\psi(2S)$ Q_{pPb} vs centrality at $\sqrt{s_{NN}} = 8.16$ TeV

- The $\psi(2S)$ suppression is stronger than J/ ψ , especially at backward rapidity
- At forward rapidity the Q_{nPh} of $\psi(2S)$ follows the same trend as J/ψ while at backward rapidity trend is different
- At backward rapidity, final-state effects needed to explain the $\psi(2S)$ behaviour. Some discrepancies between the data and the model in the peripheral region

Inclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ results in p-Pb collisions

ALICE-PUBLIC-2018-008

$\Upsilon(1S)$ and $\Upsilon(2S)$ $R_{\rm pPb}$ vs $y_{\rm cms}$ at $\sqrt{s_{\rm NN}} = 8.16$ TeV

ALICE-PUBLIC-2018-008

- Similar $\Upsilon(1S)$ suppression at forward and backward rapidity
- $\Upsilon(1S)$ and $J/\psi R_{pPb}$ agree within ~ 1σ both at forward and backward rapidity
- Theoretical predictions based on shadowing and energy loss describe the forward rapidity results but slightly overestimate the backward rapidity results
- $\Upsilon(2S)$ suppression is consistent with $\Upsilon(1S)$ but a small hint of being more suppressed (as observed by CMS and ATLAS at mid-y)
- Larger statistics at $\sqrt{s_{NN}} = 8.16$ TeV allows us to measure $\Upsilon(1S)$ $R_{\rm pPb}$ in rapidity, $p_{\rm T}$ and centrality bins

$\Upsilon(1S) R_{\text{pPb}} \text{ vs } p_{\text{T}} \text{ at } \sqrt{s_{\text{NN}}} = 8.16 \text{ TeV}$

- A similar behaviour at both forward and backward rapidity with a hint of a stronger suppression at low $p_{\rm T}$
- Theoretical predictions based on shadowing describe the forward rapidity results but slightly overestimate the backward rapidity results

$\Upsilon(1S)$ Q_{pPb} vs centrality at $\sqrt{s_{NN}} = 8.16$ TeV

- Almost no centrality dependence of Q_{pPb} both at forward and backward rapidity
- A hint for a stronger suppression at forward rapidity

Conclusions

- → Quarkonium production has been measured in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV
- → Run2 results increased significantly the precision of the measurements
- → Models face difficulties in describing consistently all results

J/ψ:

- \rightarrow J/ ψ shows a stronger suppression at forward-y than at backward-y, where R_{pPb} is compatible with unity
- \rightarrow Theoretical models based on CNM effects qualitatively describe J/ ψ results

$\psi(2S)$:

 \rightarrow $\psi(2S)$ shows a stronger suppression than J/ ψ , final-state effects needed to explain the $\psi(2S)$ behaviour

Υ:

- \rightarrow Similar Y(1S) and Y(2S) suppression at backward and forward-y
- \rightarrow Shadowing and energy loss models describe $\Upsilon(1S)$ behaviour at forward-y results while they overestimate backward-y results

Posters:

- J/ ψ production at mid-rapidity in p-Pb collisions with the ALICE detector (Shinichi Hayashi)
- Inclusive $\psi(2S)$ suppression in p-Pb collisions with ALICE at the LHC (Jhuma Ghosh)
- Upsilon production in p-Pb collisions with ALICE at the LHC (Wadut Shaikh)

Thank you

J/ ψ Q_{PC} at $\sqrt{s_{NN}}$ = 8.16 TeV

Multi-differential J/ ψ Q_{pPb} compared to theoretical models

Azimuthal anisotropy (v_2) of J/ψ

Low multiplicity

Clear away-side correlation presumably due to recoil jet

High multiplicity

Additional enhancement at both near and away sides

Low multiplicity

High multiplicity

Jet correlations eliminated via subtraction

ALI-PREL-137563

- $p_T < 3 \text{ GeV/}c \rightarrow v_2$ compatible with 0 In line with expectation of no recombination
 - $3 < p_T < 6 \text{ GeV/c} \rightarrow v_2 > 0$ Total (forward+backward,5.02+8.16 TeV) significance about 5σ

Values comparable to the measurements in central Pb-Pb collisions