

Conselho Nacional de Desenvolvimento Científico e Tecnológico

UNICAMP

Hadronic resonances, strange and multi-strange particle production in Xe-Xe and Pb-Pb collisions with ALICE at the LHC

Danilo Albuquerque Universidade Estadual de Campinas, Brazil on behalf of the ALICE Collaboration

The 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Venezia, Italy, May, 14-19, 2018

Work Supported by CNPq Grant 141186/2015-1

The Role of Strangeness

- Historically a signature of the QGP[†]
- Enhancement observed in AA

[†]J. Rafelski and B.Müller, *Phys. Rev. Lett.* **48**, 1066 (1982)

• Increases with **strangeness content**

ALI-PUB-78357

The Role of Strangeness

- Historically a signature of the QGP[†]
- Enhancement observed in AA
- Increases with strangeness content
- Recently observed in smaller systems

The Role of Strangeness

- Historically a signature of the QGP^{\dagger} ullet
- Enhancement observed in AA •

^TJ. Rafelski and B.Müller, *Phys. Rev. Lett.* **48**, 1066 (1982)

- Increases with strangeness content \bullet
- Red How do new results from Pb-Pb and Xe-Xe fit into this picture?

Hadronic phase influences measured resonances yields

- **Re-scattering**:
 - Scattering of decay products
 - Invariant mass correlation lost

Hadronic phase influences measured resonances yields

- **Re-scattering**:
 - Scattering of decay products
 - Invariant mass correlation lost
- Regeneration:
 - Pseudo-elastic scattering through resonant state
 - e.g.: $\pi K \to K^* \to \pi K$

Resonance	$ ho^0$	<i>K</i> *0	Λ(1520)	ϕ
Lifetime (fm/c)	1.3	4.16	12.6	46.2

ITS (|η|<0.9)

Six layers of silicon detectors:

• Trigger, tracking, vertex, PID (d*E*/d*x*)

ITS (|η|<0.9)

Six layers of silicon detectors:

• Trigger, tracking, vertex, PID (dE/dx) **TPC** ($|\eta| < 0.9$)

Gas-filled ionization detection volume:

• Tracking, vertex, PID (d*E*/d*x*)

ITS (|η|<0.9)

Six layers of silicon detectors:

• Trigger, tracking, vertex, PID (d*E*/dx) **TPC** ($|\eta| < 0.9$)

Gas-filled ionization detection volume:

• Tracking, vertex, PID (d*E*/d*x*)

ITS ($|\eta| < 0.9$)

Six layers of silicon detectors:

• Trigger, tracking, vertex, PID (dE/dx) **TPC** ($|\eta| < 0.9$)

Gas-filled ionization detection volume:

Tracking, vertex, PID (dE/dx)

TOF (|η|<0.9)

Chamber of resistive plates

• PID through particle time of flight

ITS (|η|<0.9)

Six layers of silicon detectors:

• Trigger, tracking, vertex, PID (d*E*/dx) **TPC** ($|\eta|$ <0.9)

Gas-filled ionization detection volume:

• Tracking, vertex, PID (dE/dx) **TOF** ($|\eta| < 0.9$)

Chamber of resistive plates

• PID through particle time of flight

ITS (|η|<0.9)

Six layers of silicon detectors:

Trigger, tracking, vertex, PID (dE/dx)

TPC (|η|<0.9)

Gas-filled ionization detection volume:

• Tracking, vertex, PID (d*E*/d*x*)

TOF (|η|<0.9)

Chamber of resistive plates

• PID through particle time of flight

V0 [V0A(2.8<*η*<5.1)&V0C(-3.7<*η*<-1.7)]

Forward array of scintillators:

• Trigger, centrality estimator

Event centrality class:

- Determined by VOM
- Characterized by charged-particle multiplicity ($\langle dN_{\rm ch}/d\eta \rangle$) ITS

ITS (|η|<0.9)

Six layers of silicon detectors:

• Trigger, tracking, vertex, PID (dE/dx) **TPC** ($|\eta| < 0.9$)

Gas-filled ionization detection volume:

• Tracking, vertex, PID (d*E*/d*x*)

TOF (|η|<0.9)

Chamber of resistive plates

• PID through particle time of flight

V0 [V0A(2.8<η<5.1)&V0C(-3.7<η<-1.7)]

Forward array of scintillators:

• Trigger, centrality estimator

C-side

V⁰ and cascade reconstruction via weak decay topology

UNICAME

V⁰ and cascade reconstruction via weak decay topology

D.S.D Albuquerque | Resonances and Strangeness Production in Pb-Pb and Xe-Xe | 14-19 May 2018 - Quark Matter

V⁰ and cascade reconstruction via weak decay topology

$$\begin{split} \mathrm{K}^{0}_{\mathrm{S}} &\to \pi^{+} + \pi^{-} & \Lambda \to \mathrm{p} + \pi^{-} \\ \Xi^{-} &\to \Lambda + \pi^{-} & \Omega^{-} \to \Lambda + \mathrm{K}^{-} \end{split}$$

Resonances reconstructed via strong decay

$$\rho(770)^0 \to \pi^+ + \pi^-$$
 $K^{*0}(892) \to K^+ + K^-$
 $\Lambda(1520) \to p + K^-$
 $\varphi(1020) \to K^+ + K^-$

V⁰ and cascade reconstruction via weak decay topology

$$\begin{split} \mathrm{K}^{0}_{\mathrm{S}} &\to \pi^{+} + \pi^{-} & \Lambda \to \mathrm{p} + \pi^{-} \\ \mathrm{\Xi}^{-} &\to \Lambda + \pi^{-} & \Omega^{-} \to \Lambda + \mathrm{K}^{-} \end{split}$$

Resonances reconstructed via strong decay

$$\rho(770)^0 \rightarrow \pi^+ + \pi^ K^{*0}(892) \rightarrow K^+ + K^-$$

 $\Lambda(1520) \rightarrow p + K^ \phi(1020) \rightarrow K^+ + K^-$

• wider range of p_T and more centrality classes w.r.t to previous energy

• wider range of p_T and more centrality classes w.r.t to previous energy

• wider range of p_T and more centrality classes w.r.t to previous energy

• wider range of p_T and more centrality classes w.r.t to previous energy

Resonances spectra in Pb-Pb at $\sqrt{s_{\rm NN}} = 2.76 {\rm ~TeV}$

Strangeness in Xe-Xe at $\sqrt{s_{\rm NN}} = 5.44 { m TeV}$

Strangeness in Xe-Xe at $\sqrt{s_{\rm NN}} = 5.44 { m TeV}$

ALICE

UNICAMP

Resonances in Xe-Xe at $\sqrt{s_{\rm NN}} = 5.44 \,{\rm TeV}$

ALICE

UNICAMP

ALICE

UNICAME

K_s^0/π ratio as a function of multiplicity

• Smooth evolution from pp to Pb-Pb

Λ/π ratio as a function of multiplicity

- Smooth evolution from pp to Pb-Pb
- Enhancement increases with strangeness content

Ξ/π ratio as a function of multiplicity

- Smooth evolution from pp to Pb-Pb
- Enhancement increases with strangeness content

Ω/π ratio as a function of multiplicity

- Smooth evolution from pp to Pb-Pb
- Enhancement increases with strangeness content

Relative Strangeness Production

- Smooth evolution from pp to Pb-Pb
- Enhancement increases with strangeness content
- At similar multiplicity, no dependence with system nor energy is observed

Relative Strangeness Production

- Smooth evolution from pp to Pb-Pb
- Enhancement increases with strangeness content
- At similar multiplicity, no dependence with system nor energy is observed
- New results in Xe-Xe in agreement with previous measurements

> Hadronic phase (UrQMD) important in EPOS to describe data

ALICE

UNICAMP

ALICE

UNICAMP

Consistent results for Xe-Xe and Pb-Pb at similar multiplicity

ALICE

UNICAMP

Large amount of new strangeness and resonances measurements

- Strange Hadrons
 - Smooth enhancement with multiplicity from pp to central AA
 - New Xe-Xe data follows trend observed in other systems
 - At similar multiplicity, **no dependence with system nor energy**
- Hadronic Resonances
 - Suppression of ρ^0 , K^{*0} , $\Lambda(1520)$, while ϕ not suppressed
 - Qualitative description is obtained with EPOS+UrQMD

Large amount of new strangeness and resonances measurements

- Strange Hadrons
 - Smooth enhancement with multiplicity from pp to central AA
 - New Xe-Xe data follows trend observed in other systems
 - At similar multiplicity, no dependence with system nor energy
- Hadronic Resonances
 - Suppression of ρ^0 , K^{*0} , $\Lambda(1520)$, while ϕ not suppressed
 - Qualitative description is obtained with EPOS+UrQMD

Thank you!

Extra Material

Weak Decay Measurements

ho^{0} reconstruction

$$\rho(770)^0 \to \pi^+ + \pi^-(\frac{u\overline{u} + d\overline{d}}{\sqrt{2}})$$

- **B.R.** = $\sim 100\%$
- $c\tau = 1.3$ fm
- m = 775.26 MeV/c
- Background subtracted with like-sign method
- Fit with **residual background** + cocktail $(K_s^0, K^*, \omega, f_0, f_2)$
- Peak model:
 - Breit-Wigner
 - Phase space correction
 - Mass dependent efficiency
 - Söding parameterization

Söding interference term

- ρ^0 mesons mass peaks reconstructed in the $\pi^+\pi^-$ channel are distorted (shifted to lower values)
- Bose-Eistein correlations between identical pions at final states

$$f_i(M_{\pi\pi}) = C\left(\frac{M_0^2 - M_{\pi\pi}^2}{M_{\pi\pi}\Gamma(M_{\pi\pi})}\right) f_s(M_{\pi\pi})$$

P. Soding, Phys. Lett. 19 702-704 (1966)

K^* and ϕ reconstruction

$\mathbf{K}^{*0}(892) \to \mathbf{K}^+ + \mathbf{K}^-(\mathbf{d}\overline{\mathbf{s}})$

- **B.R.** = 66.7%
- $c\tau = 4.17 \text{ fm}$
- *m* = 891.76 MeV/*c*

 $\phi(1020) \to K^+ + K^-(s\overline{s})$

- **B.R.** = 48.9%
- $c\tau = 46.2 \text{ fm}$
- m = 1019.46 MeV/c

- Subtract mixed event or like-charge combinatorial background
- Polynomial residual background
- Peaks: Breit-Wigner (K^*) and Voigtian (ϕ)

$\Sigma^{*\pm}$ and Ξ^{*0}

 $\times 10^3$

Counts / (8 MeV/c²)

300

200

100

12

RF-115302

.25

- Subtract mixed event combinatorial background
- Polynomial residual background
- Peaks: Breit-Wigner $(\Sigma^{*\pm})$ and Voigtian (Ξ^{*0})

Combined fit

1.35

- Residual background

Data, event-mix bkg subtracted

1.4

1.45

1.5

Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}, 0.10\%$

 $2.2 < p_{_{
m T}} < 2.7 \; {
m GeV}/c, \, |y| < 0.5$

 $\Sigma^{\star\pm} (\overline{\Sigma}^{\star\mp}) \to \Lambda \pi^{\pm} (\overline{\Lambda} \pi^{\mp})$

ALICE Performance

 $\Xi^{-}(\overline{\Xi}^{+})$

1.3

 $\Sigma^{\pm}(1385) \rightarrow \Lambda + \pi^{\pm} (uus/dds)$ **B.R.** = 87.0% $c\tau = 5.0 \text{ fm}$ $m = 1383 \, {\rm MeV}/c$ $\Xi^{*0}(1530) \to \Xi^{-} + \pi^{+}(uss)$ **B.R.** = 66.7% $c\tau = 21.7 \text{ fm}$ $m = 1532 \, {\rm MeV}/c$ Pb-Pb, \ s_{NN} = 2.76 TeV (0-10%) $3.0 < p_{\tau} < 3.5 \text{ GeV}/c, |y| < 0.5$ Counts/(6 **ALICE Preliminary** --- Mixed-event subtracted ----- Residual background Combined fit

1.52

5

148

1.54

1.56

1.55

 $M_{\Lambda\pi}$ (GeV/ c^2)

1.6

1.6

1.58

 $M_{\Xi\pi}$ (GeV/ c^2)

$\Sigma^{*\pm}$ and Ξ^{*0}

- Subtract mixed event combinatorial background
- Polynomial residual background
- Peaks: Breit-Wigner $(\Sigma^{*\pm})$ and Voigtian (Ξ^{*0})

$\Lambda(1520)$ reconstruction

 $\Lambda(1520) \rightarrow p + K^{-}(\boldsymbol{uds})$

- **B.R.** = 22.5%
- $c\tau = 12.6 \text{ fm}$
- m = 1520 MeV/c
- Subtract mixed event combinatorial background
- Polynomial residual background
- Voigtian peak

EPOS and UrQMD

EPOS: pp, pA and AA with common framework

- Core (QGP) and a corona of jets
- Core evolves hydrodynamically
- Hadronic phase with re-scattering and regeneration (UrQMD)
- Turn off UrQMD: test importance of scattering processes

EPOS: *Phys. Rev. C.* **93**, 014911 (2016) UrQMD: *Prog. Part Nucl. Phys.* **41**, 255 (1998)

Enhancement of $\boldsymbol{\varphi}$

ALICE

UNICAMP

