
Relativistic hydrodynamics with spin

Wojciech Florkowski

Institute of Nuclear Physics, Krakow and Jan Kochanowski University, Kielce, Poland

based on recent works with B. Friman, A. Jaiswal, R. Ryblewski, and E. Speranza
PRC97 (2018) 041901, arXiv:1712.07676 (nucl-th)

27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions
Venice, Italy, May 14–19, 2018

Wojciech Florkowski (IFJ PAN) May 15, 2018 1 / 20



Introduction & Motivation

Non-central heavy-ion collisions create fireballs with large global angular momenta
which may generate a spin polarization of the hot and dense matter in a way similar
to the Einstein-de Haas and Barnett effects

Much effort has recently been invested in studies of polarization and spin dynamics of
particles produced in high-energy nuclear collisions, both from the experimental and
theoretical point of view
L. Adamczyk et al. (STAR), (2017), Nature 548 (2017) 62-65, arXiv:1701.06657 (nucl-ex)
Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid
www.sciencenews.org/article/smashing-gold-ions-creates-most-swirly-fluid-ever
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Global thermodynamic equilibrium (Zubarev, Becattini)

Density operator for any quantum mechanical system

exp(−E/T )→ ρ̂(t) = exp
[
−

∫
d3Σµ(x)

(
T̂µν(x)bν(x) −

1
2

Ĵµ,αβ(x)ωαβ(x)

)]
T̂µν(x) – energy-momentum tensor, Ĵµ,αβ(x) – angular-momentum
bν(x), ωαβ(x) – Lagrange multipliers (originally ten independent functions)

d3Σµ is an element of a space-like, 3-dimensional hypersurface Σµ

we can take, for example, d3Σµ = (dV , 0, 0, 0)
in global equilibrium ρ̂(t) should be independent of time

∂µ

(
T̂µν(x)bν(x) −

1
2

Ĵµ,αβ(x)ωαβ(x)

)
= T̂µν(x)

(
∂µbν(x)

)
−

1
2

Ĵµ,αβ(x)
(
∂µωαβ(x)

)
= 0

for asymmetric energy-momentum tensor:

bν = const. , ωαβ = const.

for symmetric energy-momentum tensor:

bν = b0
ν + ω0

νγxγ b0
ν , ω

0
νγ, ωαβ = const.
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Global thermodynamic equilibrium (Zubarev, Becattini)

asymmetric T̂µν(x): splitting angular momentum into its orbital and spin part

ρ̂EQ = exp
[
−

∫
d3Σµ(x)

(
T̂µν(x)bν −

1
2

(
xαT̂µβ(x) − xβT̂µα + Ŝµ,αβ(x)

)
ωαβ

)]
= exp

[
−

∫
d3Σµ(x)

(
T̂µν(x) (bν + ωναxα) −

1
2

Ŝµ,αβ(x)ωαβ

)]
Introducing the notation

βν = bν + $ναxα, $να = −$αν

we may write

ρEQ = exp
[
−

∫
d3Σµ(x)

(
T̂µν(x)βν(x) −

1
2

Ŝµ,αβ(x)ωαβ

)]
We note that βν is the Killing vector satisfying the equation ∂µβν + ∂νβµ = 0

(thermal vorticity) $µν = −
1
2

(
∂µβν − ∂νβµ

)
= const, ωµν = $µν

symmetric T̂µν(x):

$µν = −
1
2

(
∂µβν − ∂νβµ

)
= const, ωµν = const, ωµν , $µν
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GENERAL STRATEGY FOR HYDRO WITH SPIN

PRESENT PHENOMENOLOGY PRESCRIPTION USED TO DESCRIBE THE DATA:

1) Run any type of hydro, perfect or viscous, or transport, or whatsoever, without spin
2) Find βµ(x) = uµ(x)/T (x) on the freeze-out hypersurface
(defined often by the condition T=const)
3) Calculate thermal vorticity $αβ(x) , const
4) Identify thermal vorticity with the spin polarization tensor ωµν
5) Make predictions about spin polarization

SUCH A METHOD WORKS WELL, DESCRIBES THE DATA, BUT...CAN WE TAKE IT FOR GRANTED?
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GENERAL STRATEGY FOR HYDRO WITH SPIN

THIS TALK:
1) in local equilibrium thermal vorticity and spin polarization tensor are independent —
βµ(x) and ωµν(x) continue their independent lives
2) eventually, they may become related if the system reaches global equilibrium
3) freedom in the initial conditions should be realized by independent βµ(t0,x) and
ωµν(t0,x), there must be a (relativistic) delay in the coupling between vorticity and
polarization, like shear stress/flow tensors
4) spin polarization may be an early-stage effect that survives the whole evolution

global equilibrium: βµ is the Killing vector, $µν = ωµν = const

extended global equilibrium: βµ is the Killing vector, $µν = const, ωµν = const, $µν , ωµν

local equilibrium: βµ is not the Killing vector, $µν(x) = ωµν (x)

extended local equilibrium: βµ is not the Killing vector, $µν(x) , ωµν(x)
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Local distribution functions

Our starting point is the phase-space distribution functions for spin-1/2 particles
generalized from scalar functions to two by two spin density matrices for each value of
the space-time position x and momentum p, F. Becattini et al., Annals Phys. 338 (2013) 32

f +
rs (x ,p) =

1
2m

ūr (p)X+us(p), f−rs (x ,p) = −
1

2m
v̄s(p)X−vr (p)

Following the notation used by F. Becattini et al., we introduce the matrices

X± = exp
[
±ξ(x) − βµ(x)pµ

]
M±

where

M± = exp
[
±

1
2
ωµν(x)Σ̂µν

]
Here we use the notation βµ = uµ/T and ξ = µ/T , with the temperature T , chemical
potential µ and four velocity uµ. The latter is normalized to u2 = 1. Moreover, ωµν is the
spin polarization tensor, while Σ̂µν is the spin operator expressed in terms of the Dirac
gamma matrices, Σ̂µν = (i/4)[γµ, γν].
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Spin-polarization tensor

ωµν ≡ kµuν − kνuµ + εµνβγuβωγ, (k · u = ω · u = 0)

kµ = ωµνuν, ωµ =
1
2
εµναβ ω

ναuβ electric- and magnetic-like components

dual spin polarization tensor ω̃µν = 1
2 εµναβω

αβ

1
2
ωµνω

µν = k · k − ω · ω,
1
2
ω̃µνω

µν = 2k · ω

Using the conditions k · ω = 0 and k · k − ω · ω ≥ 0 we find the compact form with

M± = cosh(ζ) ±
sinh(ζ)

2ζ
ωµνΣ̂

µν, ζ =
1
2

√

k · k − ω · ω,

this allows for construction of a consistent thermodynamic and hydrodynamic framework

the conditions above can be relaxed, discussion of the equilibrium with acceleration
E. Speranza, F. Becattini, WF, arXiv:1803.11098

Wojciech Florkowski (IFJ PAN) May 15, 2018 8 / 20



Charge current

The charge current [S. de Groot, W. van Leeuwen, and C. van Weert]

Nµ =

∫
d3p

2(2π)3Ep
pµ

[
tr4(X+) − tr4(X−)

]
= nuµ

where ‘tr4’ denotes the trace over spinor indices and n is the charge density

n = 4 cosh(ζ) sinh(ξ) n(0)(T ) =
(
eζ + e−ζ

) (
eξ − e−ξ

)
n(0)(T )

Here n(0)(T ) = 〈(u · p)〉0 is the number density of spin 0, neutral Boltzmann particles,
obtained using the thermal average

〈· · · 〉0 ≡

∫
d3p

(2π)3Ep
(· · · ) e−β·p , Ep =

√
m2 + p2

simple thermodynamic interpretation
four species: particles and antiparticles with spin up and down
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Energy-momentum tensor tensor

The energy-momentum tensor S. de Groot, W. van Leeuwen, and C. van Weert;
F. Becattini et al., Annals Phys. 338 (2013) 32

Tµν =

∫
d3p

2(2π)3Ep
pµpν

[
tr4(X+) + tr4(X−)

]
= (ε+ P)uµuν − Pgµν,

where the energy density and pressure are given by

ε = 4 cosh(ζ) cosh(ξ) ε(0)(T )

and

P = 4 cosh(ζ) cosh(ξ) P(0)(T ),

respectively. In analogy to the density n(0)(T ), we define the auxiliary quantities

ε(0)(T ) = 〈(u · p)2
〉0 and P(0)(T ) = −(1/3)〈

[
p · p − (u · p)2

]
〉0.

Tµν is symmetric, expected for classical particles with p = vEp, if Tµν = ∆pµ/∆Σν

spin tensor is conserved in this case
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Entropy current

The entropy current is given by an obvious generalization of the Boltzmann expression

Sµ = −

∫
d3p

2(2π)3Ep
pµ

(
tr4

[
X+(ln X+

− 1)
]

+ tr4 [X−(ln X− − 1)]
)

This leads to the following entropy density

s = uµSµ =
ε+ P − µn −Ωw

T
,

where Ω is defined through the relation ζ = Ω/T and

w = 4 sinh(ζ) cosh(ξ) n(0).

This suggests that Ω should be used as a thermodynamic variable of the grand canonical
potential, in addition to T and µ. Taking the pressure P to be a function of T , µ and Ω, we
find

s =
∂P
∂T

∣∣∣∣∣
µ,Ω

, n =
∂P
∂µ

∣∣∣∣∣
T ,Ω

, w =
∂P
∂Ω

∣∣∣∣∣
T ,µ
.
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Basic conservation laws

The conservation of energy and momentum requires that ∂µTµν = 0
This equation can be split into two parts, one longitudinal and the other transverse with
respect to uµ:

∂µ[(ε+ P)uµ] = uµ∂µP ≡
dP
dτ

,

(ε+ P)
duµ

dτ
= (gµα − uµuα)∂αP.

Evaluating the derivative on the left-hand side of the first equation we find

T ∂µ(suµ) + µ∂µ(nuµ) + Ω ∂µ(wuµ) = 0.

The middle term vanishes due to charge conservation,

∂µ(nuµ) = 0.

Thus, in order to have entropy conserved in our system (for the perfect-fluid description we
are aiming at), we demand that

∂µ(wuµ) = 0.

Consequently, we self-consistently arrive at the conservation of entropy, ∂µ(suµ) = 0
Equations above form dynamic background for the spin dynamics.
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Spin dynamics

Since we use a symmetric form of the energy-momentum tensor Tµν, the spin tensor Sλ,µν

satisfies the conservation law,

∂λSλ,µν = 0.

For Sλ,µν we use a phenomenological form

Sλ,µν =

∫
d3p

2(2π)3Ep
pλ tr4

[
(X+
−X−)Σ̂µν

]
=

wuλ

4ζ
ωµν

Using the conservation law for the spin density and introducing the rescaled spin tensor
ω̄µν = ωµν/(2ζ), we obtain

uλ∂λ ω̄µν =
dω̄µν

dτ
= 0,

with the normalization condition ω̄µν ω̄µν = 2.

TRANSPORT OF THE SPIN POLARIZATION DIRECTION ALONG THE FLUID STREAM LINES

CHANGE OF THE POLARIZATION MAGNITUDE DESCRIBED BY THE BACKGROUND EQUATIONS
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Global equilibrium with rotation – stationary vortex 1

The hydrodynamic flow uµ = γ(1,v) with the components (Ω̃ is a constant)

u0 = γ, u1 = −γ Ω̃ y , u2 = γ Ω̃ x , u3 = 0,

γ = 1/
√

1 − Ω̃2r2, r – distance from the vortex centre in the transverse plane

x

y

r=
1

Ω
˜

⊗

boundary

condition

radius



k


uμ=γ (1, -Ω
˜
y,Ω

˜
x, 0)

kμ=Ω
˜2

γ (0, x, y, 0)/T0

ωμ=Ω
˜
γ (0, 0, 0, 1)/T0

T = T0γ, µ = µ0γ, Ω = Ω0γ,

with T0, µ0 and Ω0 being constants. One possibility is that the vortex represents an
unpolarized fluid with ωµν = 0 and thus, with Ω0 = 0.
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Global equilibrium with rotation – stationary vortex 2

Another possibility is that the particles in the fluid are polarized and Ω0 , 0. In the latter
case we expect that the spin tensor has the structure

ωµν =


0 0 0 0
0 0 Ω̃/T0 0
0 −Ω̃/T0 0 0
0 0 0 0

 ,
where the parameter T0 has been introduced to keep ωµν dimensionless. This form yields
kµ = Ω̃2(γ/T0) (0, x , y , 0) and ωµ = Ω̃(γ/T0) (0, 0, 0, 1). As a consequence, we find
ζ = Ω̃/(2T0), which, for consistency with the hydrodynamic background equations, implies

Ω̃ = 2 Ω0.

In this case the spin polarization tensor agrees with the thermal vorticity, namely

$µν = −
1
2

(
∂µβν − ∂νβµ

)
= ωµν

as emphasised in the works by Becattini and collaborators.
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Expanding vortex

What can happen if the external boundary is removed? Expansion into external vacuum.

Stream lines and temperature (color gradient), T0 = 200 MeV, m = 1 GeV
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Quasi-realistic model for low-energy collisions 1

Initial gaussian temperature profile

Ti = T0 exp

− x2

2x2
0

−
y2

2y2
0

−
z2

2z2
0


x0 = 1 (beam direction, one can possibly use the Landau model)
y0 = 2.6 and z0 = 2 (from GLISSANDO version of the Glauber Model, Au+Au, 20-30%)

Initial flow profile

Ω̃→
1
r

tanh
r
r0
, vx = −

y
r

tanh
r
r0
, vy =

x
r

tanh
r
r0

the parameter r0 controls the magnitude of the initial angular velocity, in this talk r0 = 1.0
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Quasi-realistic model for low-energy collisions 2

Figure: Initial conditions for the quasi-realistic model

R.RYBLEWSKI’s POSTER
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Quasi-realistic model for low-energy collisions 3
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Conclusions and Summary

We have introduced a hydrodynamic framework, which includes the evolution of the spin
density in a consistent fashion. Equations that determine the dynamics of the system
follow solely from conservation laws – minimal extension of the well established
perfect-fluid picture.

Our framework can be used to determine the space-time dynamics of fluid variables,
now including also the spin tensor, from initial conditions defined on an initial space-like
hypersurface. This property makes them useful for practical applications in studies of
polarization evolution in high-energy nuclear collisions and also in other physics systems
exhibiting fluid-like, collective dynamics connected with non-trivial polarization
phenomena.

The possibility to study the dynamics of systems in local thermodynamic equilibrium
represents an important advance compared to studies, where global equilibrium was
assumed.

Next steps: spin-orbit interactions, asymmetric Tµν, dissipation, ...

Torrieri/Tinti:

ζuλ∂λ ω̄µν = ζ
dω̄µν

dτ
= −

ωµν − $µν

τrel

consistent incorporation of the relaxation of the spin polarisation towards thermal vorticity
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