Relativistic hydrodynamics with spin

Wojciech Florkowski

Institute of Nuclear Physics, Krakow and Jan Kochanowski University, Kielce, Poland
based on recent works with B. Friman, A. Jaiswal, R. Ryblewski, and E. Speranza PRC97 (2018) 041901, arXiv:1712.07676 (nucl-th)

27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions Venice, Italy, May 14-19, 2018

Introduction \& Motivation

- Non-central heavy-ion collisions create fireballs with large global angular momenta which may generate a spin polarization of the hot and dense matter in a way similar to the Einstein-de Haas and Barnett effects
- Much effort has recently been invested in studies of polarization and spin dynamics of particles produced in high-energy nuclear collisions, both from the experimental and theoretical point of view
L. Adamczyk et al. (STAR), (2017), Nature 548 (2017) 62-65, arXiv: 1701.06657 (nucl-ex) Global \wedge hyperon polarization in nuclear collisions: evidence for the most vortical fluid www.sciencenews.org/article/smashing-gold-ions-creates-most-swirly-fluid-ever

Global thermodynamic equilibrium (Zubarev, Becattini)

Density operator for any quantum mechanical system

$$
\exp (-E / T) \rightarrow \hat{\rho}(t)=\exp \left[-\int d^{3} \Sigma_{\mu}(x)\left(\hat{T}^{\mu \nu}(x) b_{\nu}(x)-\frac{1}{2} \hat{\jmath}^{\mu, \alpha \beta}(x) \omega_{\alpha \beta}(x)\right)\right]
$$

$\hat{T}^{\mu \nu}(x)$ - energy-momentum tensor, $\hat{J}^{\mu}, \alpha \beta(x)$ - angular-momentum $b_{\nu}(x), \omega_{\alpha \beta}(x)$ - Lagrange multipliers (originally ten independent functions)
$d^{3} \Sigma_{\mu}$ is an element of a space-like, 3-dimensional hypersurface Σ_{μ}
we can take, for example, $d^{3} \Sigma_{\mu}=(d V, 0,0,0)$
in global equilibrium $\hat{\rho}(t)$ should be independent of time

$$
\partial_{\mu}\left(\hat{T}^{\mu v}(x) b_{v}(x)-\frac{1}{2} \hat{\jmath}^{\mu, \alpha \beta}(x) \omega_{\alpha \beta}(x)\right)=\hat{T}^{\mu v}(x)\left(\partial_{\mu} b_{v}(x)\right)-\frac{1}{2} \hat{J}^{\mu, \alpha \beta}(x)\left(\partial_{\mu} \omega_{\alpha \beta}(x)\right)=0
$$

for asymmetric energy-momentum tensor:

$$
b_{v}=\text { const. }, \quad \omega_{\alpha \beta}=\text { const. }
$$

for symmetric energy-momentum tensor:

$$
b_{v}=b_{v}^{0}+\omega_{v \gamma}^{0} x^{\gamma} \quad b_{v}^{0}, \omega_{v \gamma}^{0}, \omega_{\alpha \beta}=\text { const. }
$$

Global thermodynamic equilibrium (Zubarev, Becattini)

asymmetric $\hat{T}^{\mu \nu}(x)$: splitting angular momentum into its orbital and spin part

$$
\begin{aligned}
\hat{\rho}_{\mathrm{E} \mathcal{G}} & =\exp \left[-\int d^{3} \Sigma_{\mu}(x)\left(\hat{T}^{\mu \nu}(x) b_{v}-\frac{1}{2}\left(x^{\alpha} \hat{T^{\mu \beta}}(x)-x^{\beta} \hat{T}^{\mu \alpha}+\hat{S}^{\mu, \alpha \beta}(x)\right) \omega_{\alpha \beta}\right)\right] \\
& =\exp \left[-\int d^{3} \Sigma_{\mu}(x)\left(\hat{T}^{\mu v}(x)\left(b_{v}+\omega_{v \alpha} x^{\alpha}\right)-\frac{1}{2} \hat{S}^{\mu, \alpha \beta}(x) \omega_{\alpha \beta}\right)\right]
\end{aligned}
$$

Introducing the notation

$$
\beta_{v}=b_{v}+\omega_{v \alpha} x^{\alpha}, \quad \omega_{v \alpha}=-\omega_{\alpha v}
$$

we may write

$$
\rho_{\mathrm{E} G}=\exp \left[-\int d^{3} \Sigma_{\mu}(x)\left(\hat{T}^{\mu \nu}(x) \beta_{v}(x)-\frac{1}{2} \hat{S}^{\mu, \alpha \beta}(x) \omega_{\alpha \beta}\right)\right]
$$

We note that β_{v} is the Killing vector satisfying the equation $\partial_{\mu} \beta_{v}+\partial_{\nu} \beta_{\mu}=0$

$$
\text { (thermal vorticity) } \omega_{\mu v}=-\frac{1}{2}\left(\partial_{\mu} \beta_{v}-\partial_{\nu} \beta_{\mu}\right)=\text { const, } \quad \omega_{\mu v}=\omega_{\mu v}
$$

symmetric $\hat{T}^{\mu \nu}(x)$:

$$
\omega_{\mu v}=-\frac{1}{2}\left(\partial_{\mu} \beta_{v}-\partial_{v} \beta_{\mu}\right)=\text { const }, \quad \omega_{\mu v}=\text { const }, \quad \omega_{\mu v} \neq \omega_{\mu v}
$$

GENERAL STRATEGY FOR HYDRO WITH SPIN

PRESENT PHENOMENOLOGY PRESCRIPTION USED TO DESCRIBE THE DATA:

1) Run any type of hydro, perfect or viscous, or transport, or whatsoever, without spin
2) Find $\beta_{\mu}(x)=u_{\mu}(x) / T(x)$ on the freeze-out hypersurface (defined often by the condition $T=$ const)
3) Calculate thermal vorticity $\omega_{\alpha \beta}(x) \neq$ const
4) Identify thermal vorticity with the spin polarization tensor $\omega_{\mu v}$
5) Make predictions about spin polarization

SUCH A METHOD WORKS WELL, DESCRIBES THE DATA, BUT...CAN WE TAKE IT FOR GRANTED?

GENERAL STRATEGY FOR HYDRO WITH SPIN

THIS TALK:

1) in local equilibrium thermal vorticity and spin polarization tensor are independent $\beta_{\mu}(x)$ and $\omega_{\mu v}(x)$ continue their independent lives
2) eventually, they may become related if the system reaches global equilibrium
3) freedom in the initial conditions should be realized by independent $\beta_{\mu}\left(t_{0}, \boldsymbol{x}\right)$ and $\omega_{\mu v}\left(t_{0}, \boldsymbol{x}\right)$, there must be a (relativistic) delay in the coupling between vorticity and polarization, like shear stress/flow tensors
4) spin polarization may be an early-stage effect that survives the whole evolution
global equilibrium: β_{μ} is the Killing vector, $\omega_{\mu \nu}=\omega_{\mu \nu}=$ const
extended global equilibrium: β_{μ} is the Killing vector, $\omega_{\mu \nu}=$ const, $\omega_{\mu \nu}=$ const, $\omega_{\mu \nu} \neq \omega_{\mu \nu}$
local equilibrium: β_{μ} is not the Killing vector, $\omega_{\mu v}(x)=\omega_{\mu \nu}(\mathrm{x})$
extended local equilibrium: β_{μ} is not the Killing vector, $\omega_{\mu v}(x) \neq \omega_{\mu v}(x)$

Local distribution functions

Our starting point is the phase-space distribution functions for spin-1/2 particles generalized from scalar functions to two by two spin density matrices for each value of the space-time position x and momentum p, F. Becattini et al., Annals Phys. 338 (2013) 32

$$
f_{r s}^{+}(x, p)=\frac{1}{2 m} \bar{u}_{r}(p) X^{+} u_{s}(p), \quad f_{r s}^{-}(x, p)=-\frac{1}{2 m} \bar{v}_{s}(p) X^{-} v_{r}(p)
$$

Following the notation used by F. Becattini et al., we introduce the matrices

$$
X^{ \pm}=\exp \left[\pm \xi(x)-\beta_{\mu}(x) p^{\mu}\right] M^{ \pm}
$$

where

$$
M^{ \pm}=\exp \left[\pm \frac{1}{2} \omega_{\mu v}(x) \hat{\Sigma}^{\mu v}\right]
$$

Here we use the notation $\beta^{\mu}=u^{\mu} / T$ and $\xi=\mu / T$, with the temperature T, chemical potential μ and four velocity u^{μ}. The latter is normalized to $u^{2}=1$. Moreover, $\omega_{\mu \nu}$ is the spin polarization tensor, while $\hat{\Sigma}^{\mu v}$ is the spin operator expressed in terms of the Dirac gamma matrices, $\hat{\Sigma}^{\mu \nu}=(i / 4)\left[\gamma^{\mu}, \gamma^{\nu}\right]$.

Spin-polarization tensor

$$
\begin{gathered}
\omega_{\mu v} \equiv k_{\mu} u_{v}-k_{\nu} u_{\mu}+\epsilon_{\mu v \beta \gamma} u^{\beta} \omega^{\gamma}, \quad(k \cdot u=\omega \cdot u=0) \\
k_{\mu}=\omega_{\mu \nu} u^{v}, \quad \omega_{\mu}=\frac{1}{2} \epsilon_{\mu v \alpha \beta} \omega^{v \alpha} u^{\beta} \quad \text { electric- and magnetic-like components }
\end{gathered}
$$ dual spin polarization tensor $\tilde{\omega}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu v \alpha \beta} \omega^{\alpha \beta}$

$$
\frac{1}{2} \omega_{\mu v} \omega^{\mu v}=k \cdot k-\omega \cdot \omega, \quad \frac{1}{2} \tilde{\omega}_{\mu v} \omega^{\mu v}=2 k \cdot \omega
$$

Using the conditions $k \cdot \omega=0$ and $k \cdot k-\omega \cdot \omega \geq 0$ we find the compact form with

$$
M^{ \pm}=\cosh (\zeta) \pm \frac{\sinh (\zeta)}{2 \zeta} \omega_{\mu v} \hat{\Sigma}^{\mu v}, \quad \zeta=\frac{1}{2} \sqrt{k \cdot k-\omega \cdot \omega}
$$

this allows for construction of a consistent thermodynamic and hydrodynamic framework
the conditions above can be relaxed, discussion of the equilibrium with acceleration E. Speranza, F. Becattini, WF, arXiv: 1803.11098

Charge current

The charge current (S. de Groot, W. van Leeuwen, and C. van Weert)

$$
N^{\mu}=\int \frac{d^{3} p}{2(2 \pi)^{3} E_{p}} p^{\mu}\left[\operatorname{tr}_{4}\left(X^{+}\right)-\operatorname{tr}_{4}\left(X^{-}\right)\right]=n u^{\mu}
$$

where ' tr_{4} ' denotes the trace over spinor indices and n is the charge density

$$
n=4 \cosh (\zeta) \sinh (\xi) n_{(0)}(T)=\left(e^{\zeta}+e^{-\zeta}\right)\left(e^{\xi}-e^{-\xi}\right) n_{(0)}(T)
$$

Here $n_{(0)}(T)=\langle(u \cdot p)\rangle_{0}$ is the number density of spin 0 , neutral Boltzmann particles, obtained using the thermal average

$$
\langle\cdots\rangle_{0} \equiv \int \frac{d^{3} p}{(2 \pi)^{3} E_{p}}(\cdots) e^{-\beta \cdot p}, \quad E_{p}=\sqrt{m^{2}+\mathbf{p}^{2}}
$$

simple thermodynamic interpretation
four species: particles and antiparticles with spin up and down

Energy-momentum tensor tensor

The energy-momentum tensor S. de Groot, W. van Leeuwen, and C. van Weert; F. Becattini et al., Annals Phys. 338 (2013) 32

$$
T^{\mu v}=\int \frac{d^{3} p}{2(2 \pi)^{3} E_{p}} p^{\mu} p^{\nu}\left[\operatorname{tr}_{4}\left(X^{+}\right)+\operatorname{tr}_{4}\left(X^{-}\right)\right]=(\varepsilon+P) u^{\mu} u^{v}-P g^{\mu v}
$$

where the energy density and pressure are given by

$$
\varepsilon=4 \cosh (\zeta) \cosh (\xi) \varepsilon_{(0)}(T)
$$

and

$$
P=4 \cosh (\zeta) \cosh (\xi) P_{(0)}(T),
$$

respectively. In analogy to the density $n_{(0)}(T)$, we define the auxiliary quantities $\varepsilon_{(0)}(T)=\left\langle(u \cdot p)^{2}\right\rangle_{0}$ and $P_{(0)}(T)=-(1 / 3)\left\langle\left[p \cdot p-(u \cdot p)^{2}\right]\right\rangle_{0}$.
$T^{\mu \nu}$ is symmetric, expected for classical particles with $\boldsymbol{p}=\boldsymbol{v} E_{p}$, if $T^{\mu \nu}=\Delta p^{\mu} / \Delta \Sigma_{v}$ spin tensor is conserved in this case

Entropy current

The entropy current is given by an obvious generalization of the Boltzmann expression

$$
S^{\mu}=-\int \frac{d^{3} p}{2(2 \pi)^{3} E_{p}} p^{\mu}\left(\operatorname{tr}_{4}\left[X^{+}\left(\ln X^{+}-1\right)\right]+\operatorname{tr}_{4}\left[X^{-}\left(\ln X^{-}-1\right)\right]\right)
$$

This leads to the following entropy density

$$
s=u_{\mu} S^{\mu}=\frac{\varepsilon+P-\mu n-\Omega w}{T}
$$

where Ω is defined through the relation $\zeta=\Omega / T$ and

$$
w=4 \sinh (\zeta) \cosh (\xi) n_{(0)}
$$

This suggests that Ω should be used as a thermodynamic variable of the grand canonical potential, in addition to T and μ. Taking the pressure P to be a function of T, μ and Ω, we find

$$
s=\left.\frac{\partial P}{\partial T}\right|_{\mu, \Omega}, \quad n=\left.\frac{\partial P}{\partial \mu}\right|_{T, \Omega}, \quad w=\left.\frac{\partial P}{\partial \Omega}\right|_{T, \mu} .
$$

Basic conservation laws

The conservation of energy and momentum requires that $\partial_{\mu} T^{\mu \nu}=0$ This equation can be split into two parts, one longitudinal and the other transverse with respect to u^{μ} :

$$
\begin{aligned}
\partial_{\mu}\left[(\varepsilon+P) u^{\mu}\right] & =u^{\mu} \partial_{\mu} P \equiv \frac{d P}{d \tau} \\
(\varepsilon+P) \frac{d u^{\mu}}{d \tau} & =\left(g^{\mu \alpha}-u^{\mu} u^{\alpha}\right) \partial_{\alpha} P
\end{aligned}
$$

Evaluating the derivative on the left-hand side of the first equation we find

$$
T \partial_{\mu}\left(s u^{\mu}\right)+\mu \partial_{\mu}\left(n u^{\mu}\right)+\Omega \partial_{\mu}\left(w u^{\mu}\right)=0 .
$$

The middle term vanishes due to charge conservation,

$$
\partial_{\mu}\left(n u^{\mu}\right)=0 .
$$

Thus, in order to have entropy conserved in our system (for the perfect-fluid description we are aiming at), we demand that

$$
\partial_{\mu}\left(w u^{\mu}\right)=0 .
$$

Consequently, we self-consistently arrive at the conservation of entropy, $\partial_{\mu}\left(s u^{\mu}\right)=0$ Equations above form dynamic background for the spin dynamics.

Spin dynamics

Since we use a symmetric form of the energy-momentum tensor $T^{\mu v}$, the spin tensor $S^{\lambda, \mu v}$ satisfies the conservation law,

$$
\partial_{\lambda} S^{\lambda, \mu v}=0 .
$$

For $S^{\lambda, \mu v}$ we use a phenomenological form

$$
S^{\lambda, \mu v}=\int \frac{d^{3} p}{2(2 \pi)^{3} E_{p}} p^{\lambda} \operatorname{tr}_{4}\left[\left(X^{+}-X^{-}\right) \hat{\Sigma}^{\mu v}\right]=\frac{w u^{\lambda}}{4 \zeta} \omega^{\mu v}
$$

Using the conservation law for the spin density and introducing the rescaled spin tensor $\bar{\omega}^{\mu \nu}=\omega^{\mu \nu} /(2 \zeta)$, we obtain

$$
u^{\lambda} \partial_{\lambda} \bar{\omega}^{\mu v}=\frac{d \bar{\omega}^{\mu v}}{d \tau}=0
$$

with the normalization condition $\bar{\omega}_{\mu \nu} \bar{\omega}^{\mu \nu}=2$.

TRANSPORT OF THE SPIN POLARIZATION DIRECTION ALONG THE FLUID STREAM LINES

CHANGE OF THE POLARIZATION MAGNITUDE DESCRIBED BY THE BACKGROUND EQUATIONS

Global equilibrium with rotation - stationary vortex 1

The hydrodynamic flow $u^{\mu}=\gamma(1, \boldsymbol{v})$ with the components (Ω is a constant)

$$
u^{0}=\gamma, \quad u^{1}=-\gamma \tilde{\Omega} y, \quad u^{2}=\gamma \tilde{\Omega} x, \quad u^{3}=0,
$$

$\gamma=1 / \sqrt{1-\tilde{\Omega}^{2} r^{2}}, r$ - distance from the vortex centre in the transverse plane

$$
T=T_{0} \gamma, \quad \mu=\mu_{0} \gamma, \quad \Omega=\Omega_{0} \gamma,
$$

with T_{0}, μ_{0} and Ω_{0} being constants. One possibility is that the vortex represents an unpolarized fluid with $\omega_{\mu \nu}=0$ and thus, with $\Omega_{0}=0$.

Global equilibrium with rotation - stationary vortex 2

Another possibility is that the particles in the fluid are polarized and $\Omega_{0} \neq 0$. In the latter case we expect that the spin tensor has the structure

$$
\omega_{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & \tilde{\Omega} / T_{0} & 0 \\
0 & -\tilde{\Omega} / T_{0} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
$$

where the parameter T_{0} has been introduced to keep $\omega_{\mu \nu}$ dimensionless. This form yields $k_{\mu}=\tilde{\Omega}^{2}\left(\gamma / T_{0}\right)(0, x, y, 0)$ and $\omega_{\mu}=\tilde{\Omega}\left(\gamma / T_{0}\right)(0,0,0,1)$. As a consequence, we find $\zeta=\tilde{\Omega} /\left(2 T_{0}\right)$, which, for consistency with the hydrodynamic background equations, implies

$$
\tilde{\Omega}=2 \Omega_{0} .
$$

In this case the spin polarization tensor agrees with the thermal vorticity, namely

$$
\omega_{\mu v}=-\frac{1}{2}\left(\partial_{\mu} \beta_{v}-\partial_{v} \beta_{\mu}\right)=\omega_{\mu v}
$$

as emphasised in the works by Becattini and collaborators.

Expanding vortex

What can happen if the external boundary is removed? Expansion into external vacuum.

Stream lines and temperature (color gradient), $T_{0}=200 \mathrm{MeV}, m=1 \mathrm{GeV}$

Quasi-realistic model for low-energy collisions 1

Initial gaussian temperature profile

$$
T_{\mathrm{i}}=T_{0} \exp \left(-\frac{x^{2}}{2 x_{0}^{2}}-\frac{y^{2}}{2 y_{0}^{2}}-\frac{z^{2}}{2 z_{0}^{2}}\right)
$$

$x_{0}=1$ (beam direction, one can possibly use the Landau model)
$y_{0}=2.6$ and $z_{0}=2$ (from GLISSANDO version of the Glauber Model, Au+Au, 20-30\%)
Initial flow profile

$$
\tilde{\Omega} \rightarrow \frac{1}{r} \tanh \frac{r}{r_{0}}, \quad v_{x}=-\frac{y}{r} \tanh \frac{r}{r_{0}}, \quad v_{y}=\frac{x}{r} \tanh \frac{r}{r_{0}}
$$

the parameter r_{0} controls the magnitude of the initial angular velocity, in this talk $r_{0}=1.0$

Quasi-realistic model for low-energy collisions 2

Figure: Initial conditions for the quasi-realistic model

Quasi-realistic model for low-energy collisions 3

Conclusions and Summary

We have introduced a hydrodynamic framework, which includes the evolution of the spin density in a consistent fashion. Equations that determine the dynamics of the system follow solely from conservation laws - minimal extension of the well established perfect-fluid picture.

Our framework can be used to determine the space-time dynamics of fluid variables, now including also the spin tensor, from initial conditions defined on an initial space-like hypersurface. This property makes them useful for practical applications in studies of polarization evolution in high-energy nuclear collisions and also in other physics systems exhibiting fluid-like, collective dynamics connected with non-trivial polarization phenomena.

The possibility to study the dynamics of systems in local thermodynamic equilibrium represents an important advance compared to studies, where global equilibrium was assumed.

Next steps: spin-orbit interactions, asymmetric $T_{\mu v}$, dissipation, ...

Torrieri/Tinti:

$$
\zeta u^{\lambda} \partial_{\lambda} \bar{\omega}^{\mu \nu}=\zeta \frac{d \bar{\omega}^{\mu \nu}}{d \tau}=-\frac{\omega_{\mu v}-\omega_{\mu v}}{\tau_{\text {rel }}}
$$

consistent incorporation of the relaxation of the spin polarisation towards thermal vorticity

