Ф Meson and K*0 Global Spin Alignment at STAR

Chensheng Zhou
(For the STAR Collaboration) Shanghai Institute of Applied Physics \& Brookhaven National Laboratory

Introduction

- Initial angular momentum $\boldsymbol{L} \sim 10^{3} \hbar$ in non-central heavy-ion collisions at RHIC.
- Baryon stopping transfers this angular momentum, in part, to the fireball.
- Due to vorticity and spin-orbit coupling, particle's spin may align with L.
- Spin alignment/polarization is a sensitive probe to vortical structure of QGP, fluid property and particle production mechanisms.

*Zuo-Tang Liang and Xin-Nian Wang, PRL 94 102301(2005)
Sergei A. Voloshin, nucl-th/0410089, and many others

```
STAR
```

Introduction

STAR Collaboration. Nature 548 (2017) 62-65

- Significant Λ and $\bar{\Lambda}$ global polarization observed.
- Most vortical fluid produced at RHIC.

Why ϕ and $\mathrm{K}^{* 0}$

- Originate predominantly from primordial production, thus less affected by feed-down compared to \wedge and anti- \wedge.
- Spin-1 particles, daughters' polar angle distribution is even function. No local cancellation associated with odd function (the case for spin-1/2 particles e.g. \wedge) when integrate over time and phase space
- Additional access to strange and light quark polarization (in particular for ϕ meson, clean access to strange quark polarization).

Global Spin Alignment

- For $S=1$ particles, spin alignment can be determined from the angular distribution of the decay products:

$$
\frac{d N}{d\left(\cos \theta^{*}\right)}=N_{0} \times\left[\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}\right]
$$

K. Schilling el al., Nucl. Phys. B 15, 397 (1970)

No: normalization.
θ^{*} : the angle between the polarization direction \boldsymbol{L} and the momentum direction of a daughter particle in the rest frame of the parent vector meson.

- A deviation of poo from $1 / 3$ signals net-spin alignment.

$\rho_{00<1 / 3:}$

Hadronization Scenarios and Spin Alignment

- Recombination of polarized (anti)quarks: $\rho_{00}<1 / 3$

$$
\rho_{00}^{\phi_{0}^{(r e c)}}=\frac{1-P_{s}^{2}}{3+P_{s}^{2}}, \quad \rho_{00}^{K_{00}^{\sigma_{0}(r e c)}}=\frac{1-P_{q} P_{s}}{3+P_{q} P_{s}}
$$

- Fragmentation of polarized quarks: $\rho_{00}>1 / 3$

$$
\rho_{00}^{\phi(f a g)}=\frac{1+\beta P_{s}^{2}}{3-\beta P_{s}^{2}}, \quad \rho_{00}^{K^{k^{\circ}(f f r a g)}}=\frac{f_{s}}{n_{s}+f_{s}} \frac{1+\beta P_{q}^{2}}{3-\beta P_{q}^{2}}+\frac{n_{s}}{n_{s}+f_{s}} \frac{1+\beta P_{s}^{2}}{3-\beta P_{s}^{2}}
$$

$P_{q}=-\frac{\pi}{4} \frac{\mu p}{E\left(E+m_{q}\right)}$ is the global quark polarization
$P_{\bar{q}}^{\text {frag }}=-\beta P_{q}$ is the polarization of the (anti-)quark created in the fragmentation process
n_{s} and f_{s} are the strange quark abundances relative to up or down quarks in QGP and quark fragmentation, respectively.

STAR's Previous Results

- STAR has published results with data taken in year 2004.
- Updated ϕ meson results shown at QM'17, with data taken in year 2010 \& 2011.
- Both of the above use the 2nd-order event plane (EP) obtained from TPC. The published result is consistent with $1 / 3$ for both ϕ and $\mathrm{K}^{*} 0$; QM'17 results with reduced uncertainties for ϕ suggest a p_{T} dependence.
- In this analysis: ~20 times more data than that was used in 2004; the 1st-order EP for ϕ.

The STAR Detector

Procedure of poo Measurement

1. Invariant mass of daughter pairs
2. Background subtraction
3. Yield extraction
4. Raw ρ_{00} extraction ($\rho_{00}^{\text {obs }}$)
5. ρ_{00} after correction for EP resolution ($\rho_{00}^{\text {rec }}$)
(Finite η acceptance effect has been determined to be negligible compared to other systematics. The de-correlation between the 1st- and 2nd-order EP has not been accounted for.)

ф Meson: Reconstruction and Yields

- ф meson:
—K+K- invariant mass
—Normalized mixed events background
- Signal fitting:
—Breit-Wigner function
—Linear residual background

$$
B W\left(\mathrm{~m}_{i n v}\right)=\frac{1}{2 \pi} \frac{A \Gamma}{\left(m-m_{\phi}\right)^{2}+(\Gamma / 2)^{2}}
$$

- Yield extraction:
-Integrate Breit-Wigner function over $\left[m_{\phi}-2 \Gamma, m_{\phi}+2 \Gamma\right]$

Invariant mass distribution before/after background subtraction
$\mathrm{Au}+\mathrm{Au} 200 \mathrm{GeV}$

Fitting of a single $\mathrm{P}_{\mathrm{T}} \& \cos \theta^{\star}$ bin.

$$
\text { Au+Au } 200 \mathrm{GeV}
$$

Centrality: 40\%-50\% рт: 1.2~1.8 GeV/c cosӨ*:1/7~2/7

K*0 : Reconstruction and Yields

- $\mathrm{K}^{*} 0$:
—п K invariant mass
—Rotated pairs background.
- Signal fitting:
—Breit-Wigner function
—Linear residual background

$$
B W\left(\mathrm{~m}_{i n v}\right)=\frac{1}{2 \pi} \frac{A \Gamma}{\left(m-m_{K^{* 0}}\right)^{2}+(\Gamma / 2)^{2}}
$$

- Yield extraction:
-Histogram bin counting.

Invariant mass distribution before/after background subtraction

$$
\text { Au+Au } 39 \mathrm{GeV}
$$

Centrality: 20\%-60\% рт: 1.2~5.0 GeV/c cos ${ }^{\star}: 0 \sim 0.2$

Observed $\rho_{0 o}$ Extraction for ϕ and $\mathrm{K}^{* 0}$

- Observed $\rho_{0 o}$ is extracted by fitting the yield with

$$
\frac{d N}{d\left(\cos \theta^{*}\right)}=N_{0} \times\left[\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}\right]
$$

Here θ^{*} is what we observed from the raw data and can be different from the real value.

Fitting of ϕ yield vs. $\cos \theta^{*}$
$\mathrm{Au}+\mathrm{Au} 200 \mathrm{GeV}$
Centrality: 40-50\% рт: 1.2-1.8 GeV/c

$$
\rho_{00}^{o b s}=0.3785+/-0.0048
$$

The Smearing of EP

- The observed EP ψ^{\prime} may be different from the real EP ψ. The smearing can be quantified by R :

$$
R=\langle\cos 2 \Delta\rangle
$$

where Δ is the difference between observed and real EP angle:

$$
\Delta=\psi-\psi^{\prime}
$$

- The smearing of EP tends to decrease possible deviations of $\rho_{00}^{\text {obs }}$ from the value of $1 / 3$, which should be corrected for.

EP Resolution Correction

- The correction is applied with the formula* for $S=1$ particles:

$$
\rho_{00}^{r e c}-\frac{1}{3}=\frac{4}{1+3 R}\left(\rho_{00}^{o b s}-\frac{1}{3}\right)
$$

The 1st-order EP: R $\sim 0.1, \frac{4}{1+3 R} \sim 3$
The 2nd-order EP: R $\sim 0.6, \frac{4}{1+3 R} \sim 1.4$

Verifying the correction formula : events are generated by Pythia* with Δ following the probability density function**:
$P(\Delta)=\frac{1}{2 \pi}\left[e^{-\frac{\chi^{2}}{2}}+\sqrt{\frac{\pi}{2}} \chi \cos (\Delta) e^{-\frac{x^{2} \sin ^{2}(\Delta)}{2}} \times\left(1+\operatorname{erf}\left(\chi \cos \frac{\Delta}{\sqrt{2}}\right)\right)\right]$
ρ_{00} are at expected values after correction.
*T. Sjostrand, S. Mrenna and P. Skands, JHEP05 (2006) 026
** S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996)

Following slides will include these results:

- Previous ϕ measurement:
- مoo reconstructed with the 2nd-order EP
- рт and energy dependences
(systematic uncertainty overestimated due to incomplete understanding of the effect of EP resolution by QM'17.)
- Updated ϕ measurement :
—Ooo reconstructed with the 1st-order EP
- D т, centrality and energy dependence
- Updated $\mathrm{K}^{* 0}$ measurement :
- مoo reconstructed with the 2nd-order EP
_more data taken in year 2010 \& 2011
- рт and energy dependences

- The results are integrated over centrality 20-60\%.
- рт $_{\text {т }}$ dependence is seen. $\rho_{00}>1 / 3$ at $\mathrm{p}_{\mathrm{T}} \sim 1.5 \mathrm{GeV} / \mathrm{c}$.
(Systematic uncertainty for the 2nd-order EP result was overestimated due to incomplete understanding of the effect of EP resolution by QM'17.)

Centrality Dependence of ϕ مоo

- The results are integrated over $1.2<\mathrm{p}_{\mathrm{T}}<5.4 \mathrm{GeV} / \mathrm{c}$.
- For non-central collisions, poo is significantly larger than $1 / 3$.

Energy Dependence of ϕ poo in Au+Au collisions

- The results are integrated over $1.2<\mathrm{p}_{\mathrm{T}}<5.4 \mathrm{GeV} / \mathrm{c}$ and centrality $20-60 \%$.
- No significant energy dependence.

рт Dependence of $K^{* 0}{ }^{0} 0$

- The results are integrated over centrality 20-60\%.
- For $\mathrm{p}_{\mathrm{T}}>1.2 \mathrm{GeV} / \mathrm{c}, \mathrm{K}^{* 0} \rho_{00}$ is less than $1 / 3$, with a deviation between 1σ and 2σ.

Energy Dependence of $\mathrm{K}^{* 0} \rho_{00}$

- The results are integrated over $1.2<\mathrm{p}_{\mathrm{T}}<5.0 \mathrm{GeV} / \mathrm{c}$ and centrality $20-60 \%$.
- No significant energy dependence.

Reconciling Measurements : Open Questions

Particle symbol	Quark content	Rest mass $\left(\mathrm{MeV} / \mathbf{c}^{2}\right)$		Mean lifetime (fm/c)	Alignment/polarization
K^{*}	$\mathrm{~d} \overline{\mathrm{~s}}$	891.66 ± 0.026	$\mathrm{I}(\mathrm{JP})=1 / 2\left(1^{-}\right)$	~ 4	$\rho_{00}<1 / 3$ for $\mathrm{p}_{\mathrm{T}}>1.2 \mathrm{GeV} / \mathrm{c}$
$\phi(1020)$	$\mathrm{s} \overline{\mathrm{S}}$	1019.461 ± 0.019	$\mathrm{IG}(\mathrm{JPC})=0-(1-)$	~ 46	$\rho_{00}>1 / 3$ at $\mathrm{p}_{\mathrm{T}} \sim 1.5 \mathrm{GeV} / \mathrm{c}$
Λ^{0}	uds	1115.683 ± 0.006	$\mathrm{I}(\mathrm{JP})=0\left(1 / 2^{+}\right)$	$\sim 7.9 \times 10^{13}$	$\mathrm{P}_{\mathrm{H}}>0$

$$
\rho_{00}^{\phi(\text { rec })}=\frac{1-P_{s}^{2}}{3+P_{s}^{2}}, \quad \rho_{00}^{K^{* 0}(\text { rec })}=\frac{1-P_{q} P_{s}}{3+P_{q} P_{s}} \quad \rho_{00}^{\phi(\text { frag })}=\frac{1+\beta P_{s}^{2}}{3-\beta P_{s}^{2}}, \quad \rho_{00}^{K^{* 0}(\text { frag })}=\frac{f_{s}}{n_{s}+f_{s}} \frac{1+\beta P_{q}^{2}}{3-\beta P_{q}^{2}}+\frac{n_{s}}{n_{s}+f_{s}} \frac{1+\beta P_{s}^{2}}{3-\beta P_{s}^{2}}
$$

- Observations do not fit a naive coalescence/recombination picture*.
- Contribution from gluon and sea-quark polarization? (Recall the gluon contribution to proton spin.)
- Lock parton polarization at different production time?

P_{H} and $\mathrm{\rho oo} \mathrm{vs.}^{\text {. Energy }}$

- Significant \wedge global polarization is observed. PH decreases with the increase of energy.
- The spin alignment of ϕ and $\mathrm{K}^{* 0}$ do not show significant energy dependence.

Vorticity Field in Play?
Odd function of x (the unit vector in reaction plane perpendicular to the beam line) and η.
\wedge polarization partially cancels when taking an average over η and x .

Cancellation is severe at high energy for which the vorticity field is closer to a perfect odd function.

Spin alignment is sensitive to the strength, not the sign, of the vorticity field. Thus there is no cancellation for ϕ and $\mathrm{K}^{\star 0}$ spin alignment.
Y. Jiang, Z. W. Lin and J. Liao, Phys. Rev. C 94, no. 4, 044910 (2016)
F. Becattini et al., Eur. Phys. J. C 75, no. 9, 406 (2015)
O. Teryaev and R. Usubov, Phys. Rev. C 92, no. 1, (2015)
H. Li, L. G. Pang, Q. Wang and X. L. Xia, Phys. Rev. C 96, 054908 (2017)

The difference in energy dependence between \wedge polarization and $\phi / K^{\star 0}$ spin alignment may be due to the different response to the vorticity field between spin- $1 / 2$ and spin- 1 particles.

Summary

- For ϕ meson, the dependence of ρ_{00} as a function of p_{T} and centrality has been observed. In Au + Au collisions at 200 GeV , the measured $\rho_{0 o}$ is $>1 / 3$ at $\mathrm{p}_{\mathrm{T}} \sim 1.5 \mathrm{GeV} / \mathrm{c}$ in centrality 20-60\%.
- For $K^{*} 0$, in $\mathrm{Au}+\mathrm{Au}$ collisions at 39 GeV , poo is $<1 / 3$ with $1 \sigma-2 \sigma$ deviation, for $\mathrm{p}_{\mathrm{T}}>1.2 \mathrm{GeV} / \mathrm{c}$ in centrality 20-60\%.
- For both ϕ and $\mathrm{K}^{* 0} \rho_{00}$, no significant energy dependence is seen.
- Particle production and vorticity induced by initial angular momentum are possible sources that might contribute to the observation. However, at $\mathrm{p}_{\mathrm{T}} \sim 1.5 \mathrm{GeV} / \mathrm{c} \rho_{00}$ for ϕ $\left(K^{* 0}\right)$ is $>1 / 3(<1 / 3)$, which does not fit a simple picture of coalescence/recombination/ fragmentation with polarized quarks.
- Additional theoretical efforts are needed to understand these features.

Backups

Stai De-correlation Between the 1st- and 2nd-order EP

- The de-correlation can be applied with the formula* for $S=1$ particles:

$$
\rho_{00}^{1 s t}-\frac{1}{3}=\frac{1+3 R_{2}}{1+3 D_{12} \cdot R_{1}}\left(\rho_{00}^{2 n d}-\frac{1}{3}\right)
$$

where

$$
\begin{aligned}
& R_{1,2}=\left\langle\cos 2\left(\Psi_{1,2}-\Psi\right)\right\rangle \\
& \mathrm{D}_{12}=\left\langle\cos 2\left(\Psi_{2}-\Psi_{1}\right)\right\rangle
\end{aligned}
$$

> *A. Tang, B. Tu, C. S. Zhou, arxiv:1803.05777

The de-correlation between the 1st- and 2nd-order EP explains part of the difference.

For now we keep the 2rd-order EP results the same as the previous.
For the final results, the de-correlation correction will be applied on the 2rd-order EP (and the systematic error will be reduced with the understanding of the detector effect).

ф Meson Efficiency

- ϕ meson efficiency*acceptance is calculated with K^{+}and K^{-}embedding data and shows very weak $\cos \theta^{*}$ dependence, and the effect on ρ_{00} is negligible.
- Here "acceptance" is the acceptance of ϕ meson.
- The acceptance of daughter particles will affect the result*. The correction for effect will be considered in next two backup slides.
*S.Lan, Z. W. Lin, S.Shi, X. Sun, Phys.Lett. B780 (2018) 319-324

Acceptance Correction

- The TPC does not have full acceptance. In our analysis, a cut of $|n|<1$ is required for daughters.
- This cut may introduce an artificial spin alignment. To quantify it, we regard the observed distribution as a convolution of real signal and acceptance effect:

$$
\left[\frac{d N}{d \cos \theta^{*} d \beta}\right]_{m \mid<1<1}=\frac{d N}{d \cos \theta^{*} d \beta} \cdot g\left(\cos \theta^{*}, \beta\right)
$$

- Note that this effect is symmetrical w.r.t the z-axis, we can describe it as:

$$
\begin{aligned}
g\left(\cos \theta^{*}, \beta\right) & =1+F^{*} \cos ^{2} \theta \\
& =1+F^{*} \sin ^{2} \theta^{*} \sin ^{2} \beta \\
& =1+F^{*} \sin ^{2} \theta^{*} \frac{1-\cos 2 \beta}{2} \\
& =1+\frac{F^{*}}{2}-\frac{F^{*}}{2} \cos ^{2} \theta^{*}-\frac{F^{*}}{2} \sin ^{2} \theta^{*} \cos 2 \beta \\
& \propto 1+F \cos ^{2} \theta^{*}+F \sin ^{2} \theta^{*} \cos 2 \beta
\end{aligned}
$$

where $F=-\frac{F^{*}}{2+F^{*}}$

Acceptance Correction

- With the EP resolution correction and acceptance correction term $g\left(\cos \theta^{*}, \beta\right)$ both considered, we have*:

$$
\left[\frac{d N}{d \cos \theta^{*}}\right]_{|m|<1} \propto\left(1+\frac{B^{\prime} F}{2}\right)+\left(A^{\prime}+F\right) \cos ^{2} \theta^{*}+\left(A^{\prime} D-\frac{B^{\prime} F}{2}\right) \cos ^{4} \theta^{*}
$$

where:

$$
A^{\prime}=\frac{A(1+3 R)}{4+A(1-R)}, \quad B^{\prime}=\frac{A(1-R)}{4+A(1-R)}
$$

here $A=\left(3 \rho_{00}^{\text {real }}-1\right) /\left(1-\rho_{00}^{\text {real }}\right), \mathrm{R}$ is the resolution. F describes the effect of acceptance.
*A. Tang, B. Tu, C. S. Zhou, arxiv:1803.05777. To be updated.

A Monte Carlo simulation to verify the acceptance correction procedure. ρ_{00} are at expected values after correction.

