

φ Meson and K*⁰ Global Spin Alignment at STAR

Chensheng Zhou

(For the STAR Collaboration) Shanghai Institute of Applied Physics & Brookhaven National Laboratory

Venezia, Italy 13-19 MAY 2018

Introduction

- Initial angular momentum $L \sim 10^3$ h in non-central heavy-ion collisions at RHIC.
- Baryon stopping transfers this angular momentum, in part, to the fireball.
- Due to vorticity and spin-orbit coupling, particle's spin may align with L.
- and particle production mechanisms.

*Zuo-Tang Liang and Xin-Nian Wang, PRL 94 102301(2005) Sergei A. Voloshin, nucl-th/0410089, and many others

Chensheng Zhou

Spin alignment/polarization is a sensitive probe to vortical structure of QGP, fluid property

Introduction

Chensheng Zhou

STAR Collaboration. Nature 548 (2017) 62-65

- Significant Λ and $\overline{\Lambda}$ global polarization observed.
- Most vortical fluid produced at RHIC.

Why ϕ and K*⁰

- compared to Λ and anti- Λ .
- Spin-1 particles, daughters' polar angle distribution is even function. No local integrate over time and phase space
- clean access to strange quark polarization).

Chensheng Zhou

Originate predominantly from primordial production, thus less affected by feed-down

cancellation associated with odd function (the case for spin-1/2 particles e.g. Λ) when

Additional access to strange and light quark polarization (in particular for ϕ meson,

Global Spin Alignment

• For S=1 particles, spin alignment can be determined from the angular distribution of the decay products:

$$\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[\left(1 - \rho_{00} \right) + (3\rho_{00} - 1) \cos \theta \right]$$

K. Schilling el al., Nucl. Phys. B 15, 397 (1970)

N₀: normalization.

 Θ^* : the angle between the polarization direction **L** and the momentum direction of a daughter particle in the rest frame of the parent vector meson.

• A deviation of ρ_{00} from 1/3 signals net-spin alignment.

ρ₀₀=1/3:

Hadronization Scenarios and Spin Alignment STAR

Recombination of polarized (anti)quarks: $\rho_{00} < 1/3$ \bullet

$$\rho_{00}^{\phi(rec)} = \frac{1 - P_s^2}{3 + P_s^2},$$

Fragmentation of polarized quarks: $\rho_{00} > 1/3$ lacksquare

$$\rho_{00}^{\phi(frag)} = \frac{1 + \beta P_s^2}{3 - \beta P_s^2}, \quad \rho_{00}^{K^{*0}(frag)} = \frac{f_s}{n_s + f_s} \frac{1 + \beta P_q^2}{3 - \beta P_q^2} + \frac{n_s}{n_s + f_s} \frac{1 + \beta P_s^2}{3 - \beta P_q^2}$$

 $P_q = -\frac{\pi}{4} \frac{\mu p}{E(E+m_q)}$ is the global quark polarization

 $P_{\overline{a}}^{frag} = -\beta P_{a}$ is the polarization of the (anti-)quark created in the fragmentation process

 n_s and f_s are the strange quark abundances relative to up or down quarks in QGP and quark fragmentation, respectively.

Chensheng Zhou

$$\rho_{00}^{K^{*0}(rec)} = \frac{1 - P_q P_s}{3 + P_q P_s}$$

Z.T. Liang and X.N. Wang, Phys. Lett. B629, 20 (2005)

STAR's Previous Results

- STAR has published results with data taken in year 2004.
- Updated φ meson results shown at QM'17, with data taken in year 2010 & 2011.
- Both of the above use the 2nd-order event plane (EP) obtained from TPC. The published result is consistent with 1/3 for both ϕ and K^{*0}; QM'17 results with reduced uncertainties for ϕ suggest a p_T dependence.

B.I.Abelev et al (STAR Collaboration), Phys. Rev. C77, 061902(R) (2008)

Chensheng Zhou

• In this analysis: ~20 times more data than that was used in 2004; the 1st-order EP for ϕ .

The STAR Detector

Chensheng Zhou

STAR

Procedure of p₀₀ Measurement

- 1. Invariant mass of daughter pairs
- 2. Background subtraction
- 3. Yield extraction
- 4. Raw ρ_{00} extraction (ρ_{00}^{obs})
- 5. ρ_{00} after correction for EP resolution (ρ_{00}^{rec})

(Finite n acceptance effect has been determined to be negligible compared to other systematics. The de-correlation between the 1st- and 2nd-order EP has not been accounted for.)

φ Meson: Reconstruction and Yields

φ meson:
—K+K- invariant mass
—Normalized mixed events background

 Signal fitting: —Breit-Wigner function —Linear residual background

$$BW(m_{inv}) = \frac{1}{2\pi} \frac{A\Gamma}{(m - m_{\phi})^2 + (\Gamma/2)^2}$$

• Yield extraction: —Integrate Breit-Wigner function over $[m_{\phi} - 2\Gamma, m_{\phi} + 2\Gamma]$

K^{*0} : Reconstruction and Yields

K*⁰:
—π K invariant mass
—Rotated pairs background.

 Signal fitting: —Breit-Wigner function
—Linear residual background

$$BW(m_{inv}) = \frac{1}{2\pi} \frac{A\Gamma}{(m - m_{K^{*0}})^2 + (\Gamma/2)^2}$$

• Yield extraction: —Histogram bin counting.

Chensheng Zhou

Centrality: 20%-60% p_T: 1.2~5.0 GeV/c cosθ*:0~0.2

Observed ρ_{00} Extraction for φ and K^{*0}

• Observed ρ_{00} is extracted by fitting the yield with

$$\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[\left(1 - \rho_{00} \right) + (3\rho_{00} - 1)\cos^2\theta^* \right]$$

Here θ^* is what we observed from the raw data and can be different from the real value.

The Smearing of EP

 The observed EP ψ' may be different from the real EP ψ. The smearing can be quantified by R:

$$R = \langle \cos 2\Delta \rangle$$

where Δ is the difference between observed and real EP angle:

$$\Delta = \psi - \psi'$$

• The smearing of EP tends to decrease possible deviations of ρ_{00}^{obs} from the value of 1/3, which should be corrected for.

 $<\cos 2(\psi - \psi') >$ as a function of centrality. The 1st-order EP is obtained from ZDC-SMD, while the 2nd-order EP is obtained from TPC.

13

EP Resolution Correction

• The correction is applied with the formula* for S=1 particles:

$$\rho_{00}^{rec} - \frac{1}{3} = \frac{4}{1+3R} (\rho_{00}^{obs} - \frac{1}{3})$$

Chensheng Zhou

 $\frac{4}{1+3R} \sim 3$ The 1st-order EP: R~0.1, The 2nd-order EP: R~0.6, $\frac{4}{1+3R} \sim 1.4$

*A. Tang, B. Tu, C. S. Zhou, arxiv:1803.05777

Verifying the correction formula : events are generated by Pythia^{*} with Δ following the probability density function**:

$$P(\Delta) = \frac{1}{2\pi} \left[e^{-\frac{\chi^2}{2}} + \sqrt{\frac{\pi}{2}} \chi \cos(\Delta) e^{-\frac{\chi^2 \sin^2(\Delta)}{2}} \times (1 + \operatorname{erf}(\chi \cos\frac{\Delta}{\sqrt{2}})) \right]$$

 ρ_{00} are at expected values after correction.

*T. Sjostrand, S. Mrenna and P. Skands, JHEP05 (2006) 026

** S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996)

Following slides will include these results:

- Previous φ measurement : \bullet $-\rho_{00}$ reconstructed with the 2nd-order EP $-p_T$ and energy dependences
- Updated φ measurement : $-\rho_{00}$ reconstructed with the 1st-order EP $-p_T$, centrality and energy dependence
- Updated K^{*0} measurement : $-\rho_{00}$ reconstructed with the 2nd-order EP -more data taken in year 2010 & 2011 $-p_T$ and energy dependences

Chensheng Zhou

(systematic uncertainty overestimated due to incomplete understanding of the effect of EP resolution by QM'17.)

- The results are integrated over centrality 20-60%.
- p_T dependence is seen. $\rho_{00} > 1/3$ at $p_T \sim 1.5$ GeV/c.

(Systematic uncertainty for the 2nd-order EP result was overestimated due to incomplete understanding) of the effect of EP resolution by QM'17.)

STAR

Centrality Dependence of $\phi \rho_{00}$

- The results are integrated over $1.2 < p_T < 5.4$ GeV/c.
- For non-central collisions, ρ_{00} is significantly larger than 1/3.

Energy Dependence of $\phi \rho_{00}$ in Au+Au collisions

- The results are integrated over $1.2 < p_T < 5.4$ GeV/c and centrality 20-60%.
- No significant energy dependence.

pt Dependence of K*⁰ poo

- The results are integrated over centrality 20-60%.
- For $p_T > 1.2$ GeV/c, K^{*0} ρ_{00} is less than 1/3, with a deviation between 1 σ and 2 σ .

Energy Dependence of K*⁰ p₀₀

- The results are integrated over $1.2 < p_T < 5.0$ GeV/c and centrality 20-60%.
- No significant energy dependence.

Reconciling Measurements : Open Questions

Particle symbol	Quark content	Rest mass (MeV/ <i>c</i> ²)		Mean lifetime (fm/c)	Alignment/polarization
K*	ds	891.66±0.026	I(J ^P)=1/2(1 ⁻)	~4	ρ_{00} < 1/3 for p _T > 1.2 GeV/c
ф(1020)	SS	1019.461±0.019	I ^G (J ^{PC})=0 ⁻ (1)	~46	ρ_{00} > 1/3 at p _T ~ 1.5 GeV/c
٨٥	uds	1115.683±0.006	I(J ^P)=0(1/2+)	~7.9×10 ¹³	Р _H > 0

$$\rho_{00}^{\phi(rec)} = \frac{1 - P_s^2}{3 + P_s^2}, \quad \rho_{00}^{K^{*0}(rec)} = \frac{1 - P_q P_s}{3 + P_q P_s}$$

- Observations do not fit a naive coalescence/recombination picture*.
- Lock parton polarization at different production time? lacksquare

Chensheng Zhou

$$\rho_{00}^{\phi(frag)} = \frac{1 + \beta P_s^2}{3 - \beta P_s^2}, \quad \rho_{00}^{K^{*0}(frag)} = \frac{f_s}{n_s + f_s} \frac{1 + \beta P_q^2}{3 - \beta P_q^2} + \frac{n_s}{n_s + f_s} \frac{1 + \beta P_s^2}{3 - \beta P_s^2}$$

*Z.T. Liang and X.N. Wang, Phys. Lett. B629, 20 (2005) Z.T. Liang and X.N. Wang, Phys.Rev.Lett. 94 (2005) 102301

Contribution from gluon and sea-quark polarization? (Recall the gluon contribution to proton spin.)

P_H and ρ_{00} vs. Energy

STAR Collaboration, arXiv:1805.04400

- \bullet
- The spin alignment of ϕ and K^{*0} do not show significant energy dependence.

Chensheng Zhou

Significant Λ global polarization is observed. P_H decreases with the increase of energy.

Odd function of x (the unit vector in reaction plane perpendicular to the beam line) and η .

and x.

Cancellation is severe at high energy for which the vorticity field is closer to a perfect odd function.

Spin alignment is sensitive to the strength, not the sign, of the vorticity field. Thus there is no cancellation for ϕ and K^{*0} spin alignment.

Y. Jiang, Z. W. Lin and J. Liao, Phys. Rev. C 94, no. 4, 044910 (2016) F. Becattini et al., Eur. Phys. J. C 75, no. 9, 406 (2015) O. Teryaev and R. Usubov, Phys. Rev. C 92, no. 1, (2015) H. Li, L. G. Pang, Q. Wang and X. L. Xia, Phys. Rev. C 96, 054908 (2017)

The difference in energy dependence between Λ polarization and ϕ/K^{*0} spin alignment may be due to the different response to the vorticity field between spin-1/2 and spin-1 particles.

Chensheng Zhou

Vorticity Field in Play?

A polarization partially cancels when taking an average over η

- For ϕ meson, the dependence of ρ_{00} as a function of p_T and centrality has been centrality 20-60%.
- in centrality 20-60%.
- For both ϕ and K^{*0} ρ_{00} , no significant energy dependence is seen. lacksquare
- \bullet fragmentation with polarized quarks.
- Additional theoretical efforts are needed to understand these features. \bullet

Chensheng Zhou

Summary

observed. In Au+Au collisions at 200 GeV, the measured ρ_{00} is > 1/3 at $p_T \sim 1.5$ GeV/c in

• For K^{*0}, in Au+Au collisions at 39 GeV, ρ_{00} is <1/3 with 1 σ -2 σ deviation, for p_T > 1.2 GeV/c

Particle production and vorticity induced by initial angular momentum are possible sources that might contribute to the observation. However, at $p_T \sim 1.5$ GeV/c ρ_{00} for ϕ (K^{*0}) is > 1/3 (< 1/3), which does not fit a simple picture of coalescence/recombination/

Backups

De-correlation Between the 1st- and 2nd-order EP

The de-correlation can be applied with the formula* for S=1 particles: \bullet

 $\rho_{00}^{1st} - \frac{1}{3} = \frac{1+1}{1+3}$

Chensheng Zhou

where

$$\frac{+3R_2}{3D_{12} \cdot R_1} (\rho_{00}^{2nd} - \frac{1}{3})$$

$$s 2(\Psi_{1,2} - \Psi) \rangle$$

$$s 2(\Psi_2 - \Psi_1) \rangle$$

*A. Tang, B. Tu, C. S. Zhou, arxiv:1803.05777

The de-correlation between the 1st- and 2nd-order EP explains part of the difference.

For now we keep the 2rd-order EP results the same as the previous.

For the final results, the de-correlation correction will be applied on the 2rd-order EP (and the systematic error will be reduced with the understanding of the detector effect).

φ Meson Efficiency

Chensheng Zhou

- φ meson efficiency*acceptance is calculated with K⁺ and K⁻ embedding data and shows very weak cosθ* dependence, and the effect on p₀₀ is negligible.
- Here "acceptance" is the acceptance of φ meson.
- The acceptance of daughter particles will affect the result*. The correction for effect will be considered in next two backup slides.

*S.Lan, Z. W. Lin, S.Shi, X. Sun, Phys.Lett. B780 (2018) 319-324

Acceptance Correction

- The TPC does not have full acceptance. In our analysis, a cut of $|\eta| < 1$ is required for daughters.
- distribution as a convolution of real signal and acceptance effect:

$$\left[\frac{dN}{d\cos\theta^*d\beta}\right]_{|\eta|<1}$$

Note that this effect is symmetrical w.r.t the z-axis, we can describe it as:

$$g(\cos\theta^*,\beta) = 1 + F^* \cos^2 \theta$$

= 1 + F^* sin^2 \theta^* sin^2 \theta
= 1 + F^* sin^2 \theta^* \frac{1 - \cos 2\beta}{2}
= 1 + \frac{F^*}{2} - \frac{F^*}{2} \cos^2 \theta^* - \frac{F^*}{2} sin^2 \theta^* \cos 2\beta
\approx 1 + F \cos^2 \theta^* + F \sin^2 \theta^* \cos 2\beta

where
$$F = -\frac{F^*}{2+F^*}$$

Chensheng Zhou

• This cut may introduce an artificial spin alignment. To quantify it, we regard the observed

Acceptance Correction

 With the EP resolution correction and acceptance correction term g(cosθ*,β) both considered, we have*:

$$\left[\frac{dN}{d\cos\theta^*}\right]_{|\eta|<1} \propto (1+\frac{B'F}{2}) + (A'+F)\cos^2\theta^* + (A'D-\frac{B'F}{2})$$

where:

$$A' = \frac{A(1+3R)}{4+A(1-R)}, \quad B' = \frac{A(1-R)}{4+A(1-R)}$$

here $A = (3\rho_{00}^{real} - 1)/(1 - \rho_{00}^{real})$, R is the resolution. F describes the effect of acceptance.

*A. Tang, B. Tu, C. S. Zhou, arxiv:1803.05777. To be updated.

