φ Meson and K*0 Global Spin Alignment at STAR

Chensheng Zhou

(For the STAR Collaboration)
Shanghai Institute of Applied Physics &
Brookhaven National Laboratory

Venezia, Italy 13-19 MAY 2018
Introduction

- Initial angular momentum $\mathbf{L} \sim 10^3 \hbar$ in non-central heavy-ion collisions at RHIC.
- Baryon stopping transfers this angular momentum, in part, to the fireball.
- Due to vorticity and spin-orbit coupling, particle’s spin may align with \mathbf{L}.
- Spin alignment/polarization is a sensitive probe to vortical structure of QGP, fluid property and particle production mechanisms.

Sergei A. Voloshin, nucl-th/0410089, and many others
Significant Λ and $\bar{\Lambda}$ global polarization observed.

Most vortical fluid produced at RHIC.
Why ϕ and K^*

- Originate predominantly from primordial production, thus less affected by feed-down compared to Λ and anti-Λ.

- Spin-1 particles, daughters’ polar angle distribution is even function. No local cancellation associated with odd function (the case for spin-1/2 particles e.g. Λ) when integrate over time and phase space.

- Additional access to strange and light quark polarization (in particular for ϕ meson, clean access to strange quark polarization).
Global Spin Alignment

• For $S=1$ particles, spin alignment can be determined from the angular distribution of the decay products:

$$\frac{dN}{d(\cos \theta^*)} = N_0 \times \left[(1 - \rho_{00}) + (3 \rho_{00} - 1) \cos^2 \theta^* \right]$$

N_0: normalization.
θ^*: the angle between the polarization direction \mathbf{L} and the momentum direction of a daughter particle in the rest frame of the parent vector meson.

ρ_{00}: deviation from $1/3$ signals net-spin alignment.

$\rho_{00} > 1/3$:
$\rho_{00} = 1/3$:
$\rho_{00} < 1/3$:

Hadronization Scenarios and Spin Alignment

• Recombination of polarized (anti)quarks: $\rho_{00} < 1/3$

$$
\rho_{00}^{\phi(\text{rec})} = \frac{1 - P_s^2}{3 + P_s^2}, \quad \rho_{00}^{K^0(\text{rec})} = \frac{1 - P_q P_s}{3 + P_q P_s}
$$

• Fragmentation of polarized quarks: $\rho_{00} > 1/3$

$$
\rho_{00}^{\phi(\text{frag})} = \frac{1 + \beta P_s^2}{3 - \beta P_s^2}, \quad \rho_{00}^{K^0(\text{frag})} = \frac{f_s}{n_s + f_s} \frac{1 + \beta P_q^2}{3 - \beta P_q^2} + \frac{n_s}{n_s + f_s} \frac{1 + \beta P_q^2}{3 - \beta P_q^2}
$$

$p_q = -\frac{\pi}{4} \frac{\mu p}{E(E + m_q)}$ is the global quark polarization

$p_q^{\text{frag}} = -\beta p_q$ is the polarization of the (anti-)quark created in the fragmentation process

n_s and f_s are the strange quark abundances relative to up or down quarks in QGP and quark fragmentation, respectively.

Chensheng Zhou
STAR’s Previous Results

- STAR has published results with data taken in year 2004.
- Updated \(\phi \) meson results shown at QM’17, with data taken in year 2010 & 2011.
- Both of the above use the 2nd-order event plane (EP) obtained from TPC. The published result is consistent with 1/3 for both \(\phi \) and \(K^*_0 \); QM’17 results with reduced uncertainties for \(\phi \) suggest a \(p_T \) dependence.
- In this analysis: \(\sim 20 \) times more data than that was used in 2004; the 1st-order EP for \(\phi \).

\[\begin{matrix}
\begin{array}{c}
\text{fragmentation:} \\
P_pP = 0.3 \\
\text{coalescence:} \\
p_pP < 0.15
\end{array}
\end{matrix} \]
The STAR Detector

The Solenoidal Tracker at RHIC

- Large acceptance (2π azimuthal angle coverage).
- Excellent particle identification capabilities.
- EP reconstruction by ZDC-SMD, BBC (the 1st-order EP) or by TPC (the 2nd-order EP).
Procedure of ρ_{00} Measurement

1. Invariant mass of daughter pairs
2. Background subtraction
3. Yield extraction
4. Raw ρ_{00} extraction (ρ_{00}^{obs})
5. ρ_{00} after correction for EP resolution (ρ_{00}^{rec})

(Finite η acceptance effect has been determined to be negligible compared to other systematics. The de-correlation between the 1st- and 2nd-order EP has not been accounted for.)
φ Meson: Reconstruction and Yields

- φ meson:
 - K+K- invariant mass
 - Normalized mixed events background

- Signal fitting:
 - Breit-Wigner function
 - Linear residual background

\[
BW(m_{inv}) = \frac{1}{2\pi} \frac{A\Gamma}{(m - m_\phi)^2 + (\Gamma / 2)^2}
\]

- Yield extraction:
 - Integrate Breit-Wigner function over
 \([m_\phi - 2\Gamma, m_\phi + 2\Gamma]\)

Invariant mass distribution before/after background subtraction
Au+Au 200 GeV
Centrality: 40%-50%

Fitting of a single \(p_T\) & \(\cos\theta^*\) bin.
Au+Au 200 GeV
Centrality: 40%-50% \(p_T\): 1.2~1.8 GeV/c \(\cos\theta^*\): 1/7~2/7

Chengsheng Zhou
K*⁰ : Reconstruction and Yields

- **K*⁰:**
 - πK invariant mass
 - Rotated pairs background.

- **Signal fitting:**
 - Breit-Wigner function
 - Linear residual background

\[
BW(m_{inv}) = \frac{1}{2\pi} \frac{A\Gamma}{(m - m_{K^*0})^2 + (\Gamma / 2)^2}
\]

- **Yield extraction:**
 - Histogram bin counting.

Invariant mass distribution before/after background subtraction

Au+Au 39 GeV
Centrality: 20%-60% \(p_T: 1.2-5.0 \text{ GeV/c} \) \(\cos\theta^*:0-0.2 \)
Observed ρ_{00} Extraction for ϕ and K^{*0}

- Observed ρ_{00} is extracted by fitting the yield with

$$\frac{dN}{d(\cos\theta^*)} = N_0 \times [(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2 \theta^*]$$

Here θ^* is what we observed from the raw data and can be different from the real value.

STAR preliminary

$$dN \propto dL \cdot \vec{p}_{k^*} \cdot \cos \theta^*$$

Fitting of ϕ yield vs. $\cos\theta^*$

- Au+Au 200 GeV
- Centrality: 40-50%
- p_T: 1.2-1.8 GeV/c

$$\rho_{00}^{\text{obs}} = 0.3785 \pm 0.0048$$
The Smearing of EP

- The observed EP ψ' may be different from the real EP ψ. The smearing can be quantified by R:

$$ R = \langle \cos 2\Delta \rangle $$

where Δ is the difference between observed and real EP angle:

$$ \Delta = \psi - \psi' $$

- The smearing of EP tends to decrease possible deviations of ρ_{obs}^{00} from the value of $1/3$, which should be corrected for.

The 1st-order EP is obtained from ZDC-SMD, while the 2nd-order EP is obtained from TPC.
EP Resolution Correction

- The correction is applied with the formula* for S=1 particles:
 \[\rho_{00}^{rec} - \frac{1}{3} = \frac{4}{1 + 3R} (\rho_{00}^{obs} - \frac{1}{3}) \]

Verifying the correction formula: events are generated by Pythia with \(\Delta \) following the probability density function**:

\[P(\Delta) = \frac{1}{2\pi} \left[e^{-\frac{\Delta^2}{2}} + \sqrt{\frac{\pi}{2}} \cos(\Delta) e^{-\frac{\Delta^2}{2}} \times (1 + \text{erf}(\Delta \cos \frac{\Delta}{\sqrt{2}})) \right] \]

\(\rho_{00} \) are at expected values after correction.

Following slides will include these results:

- Previous ϕ measurement:
 - ρ_{00} reconstructed with the 2nd-order EP
 - p_T and energy dependences
 (systematic uncertainty overestimated due to incomplete understanding of the effect of EP resolution by QM'17.)

- Updated ϕ measurement:
 - ρ_{00} reconstructed with the 1st-order EP
 - p_T, centrality and energy dependence

- Updated K^{*0} measurement:
 - ρ_{00} reconstructed with the 2nd-order EP
 - more data taken in year 2010 & 2011
 - p_T and energy dependences
• The results are integrated over centrality 20-60%.

• p_T dependence is seen. $\rho_{00} > 1/3$ at $p_T \sim 1.5 \text{ GeV/c}$.

(Systematic uncertainty for the 2nd-order EP result was overestimated due to incomplete understanding of the effect of EP resolution by QM’17.)
Centrality Dependence of $\phi \rho_{00}$

- The results are integrated over $1.2 < p_T < 5.4$ GeV/c.
- For non-central collisions, ρ_{00} is significantly larger than 1/3.
Energy Dependence of $\phi \rho_{00}$ in Au+Au collisions

- The results are integrated over $1.2 < p_T < 5.4$ GeV/c and centrality 20-60%.

- No significant energy dependence.

STAR preliminary

ϕ meson
$1.2 < p_T < 5.4$ GeV/c
Centrality 20-60%
The results are integrated over centrality 20-60%.

For $p_T > 1.2$ GeV/c, $K^{*0} \rho_{00}$ is less than 1/3, with a deviation between 1σ and 2σ.
Energy Dependence of K^*0 ρ_{00}

• The results are integrated over 1.2 < p_T < 5.0 GeV/c and centrality 20-60%.

• No significant energy dependence.
Reconciling Measurements: Open Questions

<table>
<thead>
<tr>
<th>Particle symbol</th>
<th>Quark content</th>
<th>Rest mass (MeV/c²)</th>
<th>Mean lifetime (fm/c)</th>
<th>Alignment/polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>K*</td>
<td>d̅s</td>
<td>891.66±0.026</td>
<td>~4</td>
<td>ρ₀₀ < 1/3 for p_T > 1.2 GeV/c</td>
</tr>
<tr>
<td>φ(1020)</td>
<td>s̅s</td>
<td>1019.461±0.019</td>
<td>~46</td>
<td>ρ₀₀ > 1/3 at p_T ~ 1.5 GeV/c</td>
</tr>
<tr>
<td>Λ⁰</td>
<td>uds</td>
<td>1115.683±0.006</td>
<td>~7.9×10¹³</td>
<td>P_H > 0</td>
</tr>
</tbody>
</table>

\[
\rho^{φ_{\text{rec}}}₀₀ = \frac{1 - P_s^2}{3 + P_s^2}, \quad \rho^{K^{0}_{\text{rec}}}₀₀ = \frac{1 - P_q P_s}{3 + P_q P_s}
\]

\[
\rho^{φ_{\text{frag}}}₀₀ = \frac{1 + \beta P_s^2}{3 - \beta P_s^2}, \quad \rho^{K^{0}_{\text{frag}}}₀₀ = \frac{f_s \left(1 + \beta P_q^2\right)}{n_s + f_s} + \frac{n_s \left(1 + \beta P_q^2\right)}{n_s + f_s}
\]

- Observations do not fit a naive coalescence/recombination picture*.

- Contribution from gluon and sea-quark polarization? (Recall the gluon contribution to proton spin.)

- Lock parton polarization at different production time?

• Significant Λ global polarization is observed. P_H decreases with the increase of energy.

• The spin alignment of ϕ and K^{*0} do not show significant energy dependence.
Odd function of x (the unit vector in reaction plane perpendicular to the beam line) and η.

Λ polarization partially cancels when taking an average over η and x.

Cancellation is severe at high energy for which the vorticity field is closer to a perfect odd function.

Spin alignment is sensitive to the strength, not the sign, of the vorticity field. Thus there is no cancellation for ϕ and K^{*0} spin alignment.

The difference in energy dependence between Λ polarization and ϕ/K^{*0} spin alignment may be due to the different response to the vorticity field between spin-1/2 and spin-1 particles.
Summary

• For ϕ meson, the dependence of ρ_{00} as a function of p_T and centrality has been observed. In Au+Au collisions at 200 GeV, the measured ρ_{00} is $> 1/3$ at $p_T \sim 1.5$ GeV/c in centrality 20-60%.

• For K^*, in Au+Au collisions at 39 GeV, ρ_{00} is $< 1/3$ with 1σ-2σ deviation, for $p_T > 1.2$ GeV/c in centrality 20-60%.

• For both ϕ and K^* ρ_{00}, no significant energy dependence is seen.

• Particle production and vorticity induced by initial angular momentum are possible sources that might contribute to the observation. However, at $p_T \sim 1.5$ GeV/c ρ_{00} for ϕ (K^*) is $> 1/3$ ($< 1/3$), which does not fit a simple picture of coalescence/recombination/fragmentation with polarized quarks.

• Additional theoretical efforts are needed to understand these features.
Backups
The de-correlation can be applied with the formula* for S=1 particles:

\[\rho_{00}^{1st} - \frac{1}{3} = \frac{1 + 3R_2}{1 + 3D_{12} \cdot R_1} (\rho_{00}^{2nd} - \frac{1}{3}) \]

where

\[R_{1,2} = \langle \cos 2(\Psi_{1,2} - \Psi) \rangle \]
\[D_{12} = \langle \cos 2(\Psi_2 - \Psi_1) \rangle \]

* A. Tang, B. Tu, C. S. Zhou, arxiv:1803.05777

The de-correlation between the 1st- and 2nd-order EP explains part of the difference.

For now we keep the 2nd-order EP results the same as the previous.
For the final results, the de-correlation correction will be applied on the 2nd-order EP (and the systematic error will be reduced with the understanding of the detector effect).
• ϕ meson efficiency*acceptance is calculated with K^+ and K^- embedding data and shows very weak $\cos\theta^*$ dependence, and the effect on ρ_{00} is negligible.

• Here “acceptance” is the acceptance of ϕ meson.

• The acceptance of daughter particles will affect the result*. The correction for effect will be considered in next two backup slides.

Acceptance Correction

- The TPC does not have full acceptance. In our analysis, a cut of $|\eta|<1$ is required for daughters.

- This cut may introduce an artificial spin alignment. To quantify it, we regard the observed distribution as a convolution of real signal and acceptance effect:

$$\left[\frac{dN}{d\cos\theta^*d\beta} \right]_{|\eta|<1} = \frac{dN}{d\cos\theta^*d\beta} \cdot g(\cos\theta^*,\beta)$$

- Note that this effect is symmetrical w.r.t the z-axis, we can describe it as:

$$g(\cos\theta^*,\beta) = 1 + F^* \cos^2 \theta$$

$$= 1 + F^* \sin^2 \theta^* \sin^2 \beta$$

$$= 1 + F^* \sin^2 \theta^* \frac{1 - \cos 2\beta}{2}$$

$$= 1 + \frac{F^*}{2} - \frac{F^*}{2} \cos^2 \theta^* - \frac{F^*}{2} \sin^2 \theta^* \cos 2\beta$$

$$\approx 1 + F \cos^2 \theta^* + F \sin^2 \theta^* \cos 2\beta$$

where $F = \frac{F^*}{2 + F}$

Chensheng Zhou
Acceptance Correction

- With the EP resolution correction and acceptance correction term \(g(\cos\theta^*, \beta) \) both considered, we have:

\[
\left[\frac{dN}{d\cos\theta^*} \right]_{|\eta|<1} \propto (1+\frac{B' F}{2}) + (A' + F) \cos^2 \theta^* + (A' D - \frac{B' F}{2}) \cos^4 \theta^*
\]

where:

\[
A' = \frac{A(1+3R)}{4 + A(1-R)}, \quad B' = \frac{A(1-R)}{4 + A(1-R)}
\]

here \(A = (3\rho_{00}^{\text{real}} - 1)/(1 - \rho_{00}^{\text{real}}) \), \(R \) is the resolution. \(F \) describes the effect of acceptance.

A Monte Carlo simulation to verify the acceptance correction procedure. \(\rho_{00} \) are at expected values after correction.