

Measurements of the Chiral Magnetic Effect with Background Isolation in 200 GeV Au+Au Collisions at STAR

Jie Zhao (for the STAR collaboration) May 16 2018

Purdue University, West Lafayette

Outline

- Chiral Magnetic Effect (CME)
- > RHIC-STAR experiment
- Background issue
- > Invariant mass dep. of the Δγ correlator
- \triangleright $\Delta \gamma$ with respect to Ψ_{RP} (ZDC) and Ψ_{PP} (TPC)
- Summary

Another method, poster #593 by Niseem Magdy (for STAR)

 Ψ_{RP} : reaction plane ; Ψ_{PP} : participant plane

Chiral Magnetic Effect (CME)

Kharzeev, et al. NPA 803, 227 (2008) Voloshin, PRC 70, 057901 (2004)

 $j_V = \frac{N_c e}{2\pi^2} \mu_A B$, electric charge separation along the B field

- ➤ Gluon configuration with non-zero topological charge (Q_w) converts left (right)-handed fermions to right (left)-handed fermions, generating electric current along B direction and leading to electric charge separation
- ightharpoonup Experimentally, $\gamma = \cos(\phi_{\alpha} + \phi_{\beta} 2\psi_{RP})$ used to search for the CME

The STAR detector

dE/dx (GeV/cm)

charge × momentum (GeV/c)

►Time Projection Chamber (φ=0-2π, |η|<1)</p>
Tracking - momentum
Ionization energy loss - dE/dx (particle identification)

Time Of Flight detector $(\phi=0-2\pi, |\eta|<0.9)$ Timing resolution <100ps - PID improvement

Background issue

STAR, PRL 103,251601 (2009); PRC 81,54908 (2010); PRC 88,64911 (2013)

 ϕ_{α} , ϕ_{β} , ϕ_{c} are the azimuthal angles of the charged particles measure by STAR TPC

- $\triangleright \Delta \gamma = \gamma_{OS} \gamma_{SS}$ correlator consistent with CME expectation
- Recent measurements of charge correlations suggest dominant, if not all, background contribution
- What is the background?

mixed emplicately has sause a frugy intervity of the contract of the property of the contract of the contract

Identify resonance Bkg by $m_{inv}(\pi^+\pi^-)$

- \triangleright Data show resonance structure in Δγ as function of invariant mass (m_{inv})
- Arr At high m_{inv} >1.5 GeV/c², Δγ is (5±2±4)% of the inclusive Δγ in 200 GeV Au+Au 20-50%
- Systematic uncertainty currently estimated by run differences and different ways of combining runs (combine the $\Delta \gamma$ first or the fractions directly)

Bkg shape engineering

sub-event 1 sub-event 2 α, β q_2

$$\Delta \gamma(m) = r(m) * \cos(\alpha + \beta - 2\phi_{reso.}) * v_{2,reso.} + CME$$
Bkg $\Delta \gamma$ mass shape

ESE select events with diff. v₂ by q₂ class (A, B)

Bkg $\Delta \gamma$ mass shape: $\Delta \gamma_{\Delta} - \Delta \gamma_{R}$

CME the same for events from different of classes

Fit $\Delta \gamma = k^*(\Delta \gamma_A - \Delta \gamma_B) + CME$

- TPC sub-event, one side for ESE (other side for ref.), pion PID by TPC dE/dx
- Obtain the Bkg Δγ m_{inv} shape by event shape engineering (ESE)

8

0.15

0.05

STAR

Bkg shape engineering

- > TPC sub-event, one side for ESE (other side for ref.), pion PID by TPC dE/dx
- \triangleright Obtain the Bkg $\Delta \gamma$ m_{inv} shape by event shape engineering (ESE)

Bkg + CME fit at low invariant mass

$$\Delta \gamma_A = b^* \Delta \gamma_B + (1-b)^* CME$$

Bkg subtracted $\Delta\gamma$ / inclusive $\Delta\gamma$

 \triangleright Bkg subtracted $\Delta \gamma$ / inclusive $\Delta \gamma$:

(2±4±6)% in 200 GeV 20-50% Au+Au

TAR Use Ψ_{PP} and Ψ_{RP} to solve Bkg and CME

Ψ_{PP} maximizes flow,

- flow background **→**
- \triangleright Ψ_{RP} maximizes the magnetic field (B),
- CME signal
- \triangleright Ψ_{PP} and Ψ_{RP} are correlated, but not identical due to geometry fluctuations

H-J. Xu, et al, arXiv:1710.07265

 $\Delta \gamma$ w.r.t. TPC Ψ_{PP} (proxy of Ψ_{PP}) and ZDC Ψ_{1} (proxy of Ψ_{RP}) contain different fractions of CME and Bkg

$$\Delta \gamma \{\psi_{TPC}\} = CME\{\psi_{TPC}\} + Bkg\{\psi_{TPC}\}$$

$$\Delta \gamma \{\psi_{ZDC}\} = CME\{\psi_{ZDC}\} + Bkg\{\psi_{ZDC}\}$$

$$CME\{\psi_{TPC}\} = a * CME\{\psi_{ZDC}\}, Bkg\{\psi_{ZDC}\} = a * Bkg\{\psi_{TPC}\}$$

$$a = v_2 \{ \psi_{ZDC} \} / v_2 \{ \psi_{TPC} \}, A = \Delta \gamma \{ \psi_{ZDC} \} / \Delta \gamma \{ \psi_{TPC} \}$$

Both are experimental measurements

$$r = \frac{\text{CME}\{\psi_{\text{ZDC}}\}}{\text{Bkg}\{\psi_{\text{TPC}}\}} = \left(\frac{a-1}{a+1} - \frac{A-1}{A+1}\right) / \left(\frac{a-1}{a+1} + \frac{A-1}{A+1}\right) = \frac{A-a}{1-Aa}$$

$$f_{\text{EP}}(\text{CME}) = \text{CME}\{\psi_{\text{TPC}}\} / \Delta \gamma \{\psi_{\text{TPC}}\} = r / (r + 1/a) = (A/a - 1) / (1/a^2 - 1)$$

$\Delta \gamma$ with respect to Ψ_{PP} and Ψ_{RP}

TPC sub-event (east and west) method to reduce non-flow effects

 $\gamma = \cos(\phi_{\alpha} + \phi_{\beta} - 2\psi)/R$, $v_2 = \cos(2\phi - 2\psi)/R$

 Ψ = Ψ_{PP} or Ψ_{RP} . R the corresponding resolution

 Ψ_{PP} from TPC ψ_{EP1} (-1< η <-0.075) or ψ_{EP2} (0.075< η <1)

 Ψ_{RP} from combined ZDC ψ_{zdc1} and ψ_{zdc2}

Poskanzer, Voloshin, PRC 58, 3 (1998); STAR, PRC 86, 054908 (2012)

$\Delta \gamma$ with respect to Ψ_{PP} and Ψ_{RP}

nevertheless also look at full TPC acceptance

CME (EP) fraction	20-50% centrality
TPC sub-event	(9±4±7)%
TPC full-event	(12±4±11)%

CME fractions are (9±4±7)% and (12±4±11)% from TPC sub-event and TPC full-event methods in 200 GeV 20-50% Au+Au collisions, respectively

Summary

- ➤ Identify resonance Bkg by $\pi\pi$ invariant mass. Observation of resonance structure in Δγ at m_{inv}<1.5 GeV/c². Isolate the possible CME from Bkg by invariant mass + ESE.
- \triangleright $\Delta \gamma$ with respect to Ψ_{PP} and Ψ_{RP} , isolate possible CME from Bkg

Year	Minbias events
Run11	~0.5B
Run14	~0.8B
Run16	~1.2B

These data-driven estimates indicate that:

possible CME signal is small, within 1-2σ from zero

Summary

- ➤ Identify resonance Bkg by $\pi\pi$ invariant mass. Observation of resonance structure in Δγ at m_{inv}<1.5 GeV/c². Isolate the possible CME from Bkg by invariant mass + ESE.
- \triangleright $\Delta \gamma$ with respect to Ψ_{PP} and Ψ_{RP} , isolate possible CME from Bkg

Year	Minbias events
Run11	~0.5B
Run14	~0.8B
Run16	~1.2B

- More Au+Au data (+isobar)
- \triangleright Consider ZDC upgrades for Ψ_{RP}

These data-driven estimates indicate that:

possible CME signal is small, within 1-2σ from zero