Quark Matter 2018

Contribution ID: 848

Type: Parallel Talk

Measurements of the Chiral Magnetic Effect with Background Isolation in 200 GeV Au+Au Collisions at STAR

Wednesday, 16 May 2018 09:40 (20 minutes)

Using two novel methods, pair invariant mass (m_{inv}) [1] and comparative measurements with respect to reaction plane $(\psi_{\rm RP})$ and participant plane $(\psi_{\rm PP})$ [2], we isolate the chiral magnetic effect (CME) from backgrounds in 200 GeV Au+Au collisions at STAR.

The invariant mass method identifies the resonance background contributions, coupled with the elliptic flow (v_2) , to the charge correlator CME observable $(\Delta \gamma)$. At high mass $(m_{inv} > 1.5 \text{ GeV}/c^2)$ where resonance contribution is small, $\Delta \gamma$ is found to be consistent with zero within uncertainty. In the low mass region $(m_{inv} < 1.5 \text{ GeV}/c^2)$, resonance peaks are observed in $\Delta \gamma$ as function of m_{inv} . A two-component model fit is devised to extract the CME signal, assumed smooth in m_{inv} .

In the comparative method, the $\psi_{\rm RP}$ is assessed by spectator neutrons measured by the ZDC, and the $\psi_{\rm PP}$ by the 2nd harmonic event plane measured by TPC. The v_2 is stronger along $\psi_{\rm PP}$ and weaker along $\psi_{\rm RP}$; in contrast, the magnetic field, being from spectator protons, is weaker along $\psi_{\rm PP}$ and stronger along $\psi_{\rm RP}$. As a result the $\Delta\gamma$ measured with respect to $\psi_{\rm RP}$ and $\psi_{\rm PP}$ contain different amounts of CME and background, and can thus determine these two contributions. We report the results from this determination.

References

J. Zhao, H. Li, F. Wang, arXiv:1705.05410 (2017).
H. Xu, J. Zhao, X. Wang, H. Li, Z. Lin, C. Shen, F. Wang, arXiv:1710.07265 (2017).

Content type

Experiment

Collaboration

STAR

Centralised submission by Collaboration

Presenter name already specified

Primary author: YE, Zhenyu (University of Illinois at Chicago)

Presenter: ZHAO, Jie (Purdue University)

Session Classification: Chirality, vorticity and polarisation effects

Track Classification: Chirality, vorticity and polarisation effects