Fluid dynamics of out of equilibrium boost invariant
 plasmas

Li Yan

Department of Physics, McGill University THcGill

Quark Matter 2018, Venice, Italy

Out-of-equilibrium QGP system in heavy-ion collisions

\mathcal{P}_{T} : transverse pressure
\mathcal{P}_{L} : longitudinal pressure
, system dominated by longitudinal expansion

Beyond pressure anisotropy: \mathcal{L}-moment

p^{2}-moment weighted with Legendre Polynomial $P_{2 n}$:

$$
\mathcal{L}_{n}=\int \frac{d^{3} p}{(2 \pi)^{3} p^{0}} p^{2} P_{2 n}\left(p_{z} / p_{\perp}\right) f\left(\tau, \vec{p}_{\perp}, p_{z}\right)
$$

Beyond pressure anisotropy: \mathcal{L}-moment

p^{2}-moment weighted with Legendre Polynomial $P_{2 n}$:

$$
\mathcal{L}_{n}=\int \frac{d^{3} p}{(2 \pi)^{3} p^{0}} p^{2} P_{2 n}\left(p_{z} / p_{\perp}\right) f\left(\tau, \vec{p}_{\perp}, p_{z}\right)
$$

- Mass dimension of \mathcal{L}_{n} is same as $T^{\mu \nu}$.
- $n=0 \quad \Leftrightarrow \quad$ energy density: $\mathcal{L}_{0}=\mathcal{E}$.
- $n=1 \Leftrightarrow$ pressure anisotropy: $\mathcal{L}_{1}=\mathcal{P}_{L}-\mathcal{P}_{T}$.
- $n \geq 2 \Leftrightarrow$ finer structure of f (or δf).

Equation of motion for \mathcal{L}_{n}

Transport equation with relaxation time approximation :

$$
\left[\partial_{\tau}-\frac{p_{z}}{\tau} \partial_{p_{z}}\right] f(\mathbf{p}, \tau)=-\frac{f(\mathbf{p}, \tau)-f_{\mathrm{eq}}(p / T)}{\tau_{R}}, \quad \tau_{R}=\tau_{R}(T)
$$

Equation of motion for \mathcal{L}_{n}

Transport equation with relaxation time approximation :

$$
\left[\partial_{\tau}-\frac{p_{z}}{\tau} \partial_{p_{z}}\right] f(\mathbf{p}, \tau)=-\frac{f(\mathbf{p}, \tau)-f_{\mathrm{eq}}(p / T)}{\tau_{R}}, \quad \tau_{R}=\tau_{R}(T)
$$

which is equivalent to

$$
\frac{\partial \mathcal{L}_{n}}{\partial \tau}=-\frac{1}{\tau}\left[a_{n} \mathcal{L}_{n}+b_{n} \mathcal{L}_{n-1}+c_{n} \mathcal{L}_{n+1}\right]-\frac{\mathcal{L}_{n}}{\tau_{R}}\left(1-\delta_{n 0}\right), \quad n=0,1, \ldots
$$

- a_{n}, b_{n} and c_{n} are constant coefficients.

$$
a_{0}=\frac{4}{3}, \quad a_{1}=\frac{38}{21}, \quad \ldots
$$

- τ_{R} / τ defines Knudsen number \Leftrightarrow How far a system is away from equilibrium

Truncation of the coupled equations

$$
\frac{\partial \mathcal{L}_{n}}{\partial \tau}=-\frac{1}{\tau}\left[a_{n} \mathcal{L}_{n}+b_{n} \mathcal{L}_{n-1}+c_{n} \mathcal{L}_{n+1}\right]-\frac{\mathcal{L}_{n}}{\tau_{R}}\left(1-\delta_{n 0}\right) \quad n=0,1, \ldots
$$

Truncate at n -th order: ignore all \mathcal{L}-moments higher than n-th order

Truncation of the coupled equations

$$
\frac{\partial \mathcal{L}_{n}}{\partial \tau}=-\frac{1}{\tau}\left[a_{n} \mathcal{L}_{n}+b_{n} \mathcal{L}_{n-1}+c_{n} \mathcal{L}_{n+1}\right]-\frac{\mathcal{L}_{n}}{\tau_{R}}\left(1-\delta_{n 0}\right) \quad n=0,1, \ldots
$$

Truncate at n -th order: ignore all \mathcal{L}-moments higher than n-th order

- at $n=0$

$$
\frac{\partial \mathcal{E}}{\partial \tau}+\frac{4}{3} \frac{\mathcal{E}}{\tau}=0 \quad \rightarrow \quad \mathcal{E} \sim \tau^{-4 / 3} \quad \text { ideal hydro }
$$

Truncation of the coupled equations

$$
\frac{\partial \mathcal{L}_{n}}{\partial \tau}=-\frac{1}{\tau}\left[a_{n} \mathcal{L}_{n}+b_{n} \mathcal{L}_{n-1}+c_{n} \mathcal{L}_{n+1}\right]-\frac{\mathcal{L}_{n}}{\tau_{R}}\left(1-\delta_{n 0}\right) \quad n=0,1, \ldots
$$

Truncate at n -th order: ignore all \mathcal{L}-moments higher than n-th order

- at $n=0$

$$
\frac{\partial \mathcal{E}}{\partial \tau}+\frac{4}{3} \frac{\mathcal{E}}{\tau}=0 \quad \rightarrow \quad \mathcal{E} \sim \tau^{-4 / 3} \quad \text { ideal hydro }
$$

- at $n=1$

$$
\begin{aligned}
& \frac{\partial \mathcal{L}_{0}}{\partial \tau}=-\frac{1}{\tau}\left[a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right] \\
& \frac{\partial \mathcal{L}_{1}}{\partial \tau}=-\frac{1}{\tau}\left[a_{1} \mathcal{L}_{1}+b_{1} \mathcal{L}_{0}\right]-\frac{\mathcal{L}_{1}}{\tau_{R}} \quad \text { 2nd order viscous hydro? }
\end{aligned}
$$

Truncation of the coupled equations

$$
\frac{\partial \mathcal{L}_{n}}{\partial \tau}=-\frac{1}{\tau}\left[a_{n} \mathcal{L}_{n}+b_{n} \mathcal{L}_{n-1}+c_{n} \mathcal{L}_{n+1}\right]-\frac{\mathcal{L}_{n}}{\tau_{R}}\left(1-\delta_{n 0}\right) \quad n=0,1, \ldots
$$

Truncate at n -th order: ignore all \mathcal{L}-moments higher than n-th order

- at $n=0$

$$
\frac{\partial \mathcal{E}}{\partial \tau}+\frac{4}{3} \frac{\mathcal{E}}{\tau}=0 \quad \rightarrow \quad \mathcal{E} \sim \tau^{-4 / 3} \quad \text { ideal hydro }
$$

- at $n=1$

$$
\begin{aligned}
& \frac{\partial \mathcal{L}_{0}}{\partial \tau}=-\frac{1}{\tau}\left[a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right] \\
& \frac{\partial \mathcal{L}_{1}}{\partial \tau}=-\frac{1}{\tau}\left[a_{1} \mathcal{L}_{1}+b_{1} \mathcal{L}_{0}\right]-\frac{\mathcal{L}_{1}}{\tau_{R}} \quad \text { 2nd order viscous hydro? }
\end{aligned}
$$

- at higher orders ...

Convergence of truncation

Convergence of truncation

Convergence of truncation

Convergence of truncation

The free-streaming fixed points: $\tau / \tau_{R} \rightarrow 0$

$$
\frac{\partial \mathcal{L}_{n}}{\partial \tau}=-\frac{1}{\tau}\left[a_{n} \mathcal{L}_{n}+b_{n} \mathcal{L}_{n-1}+c_{n} \mathcal{L}_{n+1}\right]
$$

For infinite n :

- $\mathcal{L}_{0}=\mathcal{L}_{1}=\mathcal{L}_{2}=\mathcal{L}_{3}=\ldots$

$$
\Rightarrow \mathcal{L}_{n}=\mathcal{L}_{n}\left(\tau_{0}\right)\left(\frac{\tau_{0}}{\tau}\right)^{2} \quad \rightarrow \tau \partial_{\tau} \ln \mathcal{L}_{n}=-2
$$

- $\mathcal{L}_{n}(\tau)=P_{2 n}(0) \mathcal{L}_{0}(\tau)$,

$$
\Rightarrow \mathcal{L}_{n}(\tau)=\mathcal{L}_{n}\left(\tau_{0}\right)\left(\frac{\tau_{0}}{\tau}\right) \quad \rightarrow \tau \partial_{\tau} \ln \mathcal{L}_{n}=-1
$$

For finite n,

$$
\left(\begin{array}{ccccc}
a_{0} & c_{0} & 0 & 0 & \ldots \\
b_{1} & a_{1} & c_{1} & 0 & \ldots \\
0 & b_{2} & a_{2} & c_{2} & \ldots \\
\cdots & \cdots & \cdots & \cdots & \ldots
\end{array}\right) \Rightarrow \quad \approx-2(\text { unstable }) \text { and } \approx-1(\text { stable })
$$

The hydro fixed points: $\tau / \tau_{R} \rightarrow \infty$

Hydro EoM via truncations

- Truncation at $n=1$ gives 2 nd order viscous hydro: $\left(c_{0} \mathcal{L}_{1}=\Pi=\Pi_{\xi}^{\xi}\right)$

$$
\begin{aligned}
& \partial_{\tau} \mathcal{L}_{0}=-\frac{1}{\tau}\left(a_{0} \mathcal{L}_{0}+c_{1} \mathcal{L}_{1}\right) \quad \rightarrow \quad \partial_{\tau} \mathcal{E}+\frac{\mathcal{E}+\mathcal{P}_{L}}{\tau}=0 \\
& \partial_{\tau} \mathcal{L}_{1}=-\frac{1}{\tau}\left(a_{1} \mathcal{L}_{1}+b_{1} \mathcal{L}_{0}\right)-\frac{1}{\tau_{R}} \mathcal{L}_{1} \quad \rightarrow \quad \Pi=-\eta \sigma-a_{1} \frac{\tau_{R}}{\tau} \Pi-\tau_{R} \partial_{\tau} \Pi
\end{aligned}
$$

* Note $a_{1}=38 / 21=\beta_{\pi \pi}$ is 2nd transport coefficient in DNMR.

> Denicol, Niemi, Molnar and Rischke

* Also compatible with BRSSS with respect to conformal symmetry:

Baier, Romatschke, Son, Starinets and Stephanov

$$
\Pi=-\eta \sigma-\underbrace{\tau_{R}}_{\tau_{\pi}}\left[\partial_{\tau} \Pi+\frac{4}{3} \Pi \nabla \cdot u\right]+\tau_{R} \underbrace{\left(a_{1}-\frac{4}{3}\right) \frac{3}{4}}_{\frac{\lambda_{1}}{\eta \tau_{\pi}}} \frac{\Pi^{2}}{\eta},
$$

The hydro fixed points: $\tau / \tau_{R} \rightarrow \infty$

Hydro EoM via truncations

- Truncation at $n=1$ gives 2 nd order viscous hydro: $\left(c_{0} \mathcal{L}_{1}=\Pi=\Pi_{\xi}^{\xi}\right)$

$$
\begin{aligned}
& \partial_{\tau} \mathcal{L}_{0}=-\frac{1}{\tau}\left(a_{0} \mathcal{L}_{0}+c_{1} \mathcal{L}_{1}\right) \quad \rightarrow \quad \partial_{\tau} \mathcal{E}+\frac{\mathcal{E}+\mathcal{P}_{L}}{\tau}=0 \\
& \partial_{\tau} \mathcal{L}_{1}=-\frac{1}{\tau}\left(a_{1} \mathcal{L}_{1}+b_{1} \mathcal{L}_{0}\right)-\frac{1}{\tau_{R}} \mathcal{L}_{1} \quad \rightarrow \quad \Pi=-\eta \sigma-a_{1} \frac{\tau_{R}}{\tau} \Pi-\tau_{R} \partial_{\tau} \Pi
\end{aligned}
$$

* Note $a_{1}=38 / 21=\beta_{\pi \pi}$ is 2nd transport coefficient in DNMR.

> Denicol, Niemi, Molnar and Rischke

* Also compatible with BRSSS with respect to conformal symmetry:

Baier, Romatschke, Son, Starinets and Stephanov

$$
\Pi=-\eta \sigma-\underbrace{\tau_{R}}_{\tau_{\pi}}\left[\partial_{\tau} \Pi+\frac{4}{3} \Pi \nabla \cdot u\right]+\tau_{R} \underbrace{\left(a_{1}-\frac{4}{3}\right) \frac{3}{4}}_{\frac{\lambda_{1}}{\eta \tau_{\pi}}} \frac{\Pi^{2}}{\eta},
$$

- A systematic sway to derive viscous hydro of any order (Bjorken flow)!

The hydro fixed points: $\tau / \tau_{R} \rightarrow \infty$

Ansatz form of gradient expansion

$$
\mathcal{L}_{n}=\sum_{m=0} \frac{\alpha_{m}^{(n)}}{\tau^{n}}
$$

asymptotic decay rate determined by the leading term: $\mathcal{L}_{n} \sim \alpha_{n}^{(n)} / \tau$

$$
\begin{array}{ll}
\Rightarrow \tau \partial_{\tau} \ln \mathcal{L}_{n}=-\frac{4+2 n}{3} & \left(\tau_{R} \propto 1 / T\right) \\
\Rightarrow \tau \partial_{\tau} \ln \mathcal{L}_{n}=-\frac{4+3 n}{3} & \left(\tau_{R} \text { constant }\right)
\end{array}
$$

These are stable fixed points in the hydro regime.

Fixed points and hydro attractor

Define: $g_{n}=\tau \partial_{\tau} \ln \mathcal{L}_{n}$

- Free-streaming limit: fixed points of all g_{n} degenerate ≈-1.
- Hydro limit: fixed points of g_{n} split according to n.
- System evolves between these two types of fixed points \Rightarrow attractor. e.g., ideal hydro is a trivial attractor solution: $g_{0}=$ const. $=-4 / 3$

Remarks on attractor solution

- Attractor solution exists, with or without conformal symmetry, beyond Bjorken symmetry. P. Romatschke, M. Martinez, M.

Strickland, G. Denicol, ...

- Non-hydro modes decay exponentially, w.r.t. attractor solutions. Quasi-normal modes. M. Heller, M. Spalinski, P. Romatschke, A. Kurkela, U. Wiedemann, ...
- Attractor corresponds to Borel-summation of hydro gradient expansion. M.Heller, M. Spalinski, R. Janik, P. Witaszczky, G. Basar, G. Dunne, ... Quark Matter 2018, L. Yan

Renormalization of η / s

Effects from higher order moments/viscous hydro (leading order):

$$
\begin{aligned}
\partial_{\tau} \mathcal{L}_{0} & =-\frac{1}{\tau}\left(a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right), \\
\partial_{\tau} \mathcal{L}_{1} & =-\frac{1}{\tau}\left(a_{1} \mathcal{L}_{1}+b_{0} \mathcal{L}_{0}\right)-\underbrace{\left[1+\frac{c_{1} \tau_{R}}{\tau} \frac{\mathcal{L}_{2}}{\mathcal{L}_{1}}\right]}_{Z_{\eta / s}^{-1}} \frac{\mathcal{L}_{1}}{\tau_{R}} \quad \text { (2nd hydro) }, \\
g_{2}\left(\tau / \tau_{R}\right) & =-a_{2}-b_{2} \frac{\mathcal{L}_{2}}{\mathcal{L}_{1}}-\frac{\tau}{\tau_{R}} .
\end{aligned}
$$

- Taking attractor solution for g_{2} : Borel-resummed gradients.
- Off-equilibrium effects w.r.t. 2nd order hydro \Leftrightarrow renormalized η / s !

Renormalization of η / s

Out-of-equilibrium physics can be effectively absorbed into a reduced η / s.
E. Shuryak, M. Lublinsky, P. Romatschke

Numerical test of η / s renormalization

2nd order viscous hydro using renormalized η / s

Summary

- \mathcal{L}-moments are proposed to quantify system thermalization.
- Coupled equations for \mathcal{L}_{n} are derived, with valid truncations. \Rightarrow fluid dynamics for out-of-equilibrium system
- Attractor solution smoothly connect fixed points of \mathcal{L}_{n} in two limits.
- The system in heavy-ion collisions could be out-of-equilibrium:

Hydro could start much earlier in heavy-ion collisions.
Physical value of $\eta / s>$ phenomenological expectations $\sim O(1 / 4 \pi)$.

Summary

- \mathcal{L}-moments are proposed to quantify system thermalization.
- Coupled equations for \mathcal{L}_{n} are derived, with valid truncations. \Rightarrow fluid dynamics for out-of-equilibrium system
- Attractor solution smoothly connect fixed points of \mathcal{L}_{n} in two limits.
- The system in heavy-ion collisions could be out-of-equilibrium:

Hydro could start much earlier in heavy-ion collisions.
Physical value of $\eta / s>$ phenomenological expectations $\sim O(1 / 4 \pi)$.

$$
\Rightarrow \text { strongly coupled QGP? }
$$

Back-up slides

- Truncation at $n=2$ gives 3rd order viscous hydro: $\left(c_{0} \mathcal{L}_{2}=\Sigma=\Sigma_{\xi}^{\xi}\right)$

$$
\begin{aligned}
\Pi=-\eta \sigma & -\tau_{\pi}\left[\partial_{\tau} \Pi+\frac{4}{3} \Pi \nabla \cdot u\right]+\underbrace{\tau_{\pi}\left(a_{1}-\frac{4}{3}\right) \frac{3}{4}}_{\frac{\lambda_{1}}{\eta \tau_{\pi}}} \frac{\Pi^{2}}{\eta} \\
& +\underbrace{\frac{\Sigma c_{1} \tau_{\pi}}{4}} \frac{\Sigma \Pi}{\eta} \\
& \sim \text { 3rd order transport }
\end{aligned}
$$

$$
\Sigma=\frac{\lambda_{1}+\eta \tau_{\pi}}{2 \eta^{2}} \Pi^{2}-\tau_{\pi}\left(\partial_{\tau} \Sigma+\frac{4}{3} \Sigma \nabla \cdot u\right)+\underbrace{\tau_{\pi}\left(a_{2}-\frac{4}{3}\right) \frac{3}{4}}_{\text {3rd order transport }} \frac{\Sigma \Pi}{\eta}
$$

Solved by kinetic theory with respect to QCD 2-to-2 scattering.

