

Measurement of the azimuthal anisotropy of charged particles in 5.02 TeV Pb+Pb and 5.44 TeV Xe+Xe collisions with **ATLAS**

Tomasz Bold - AGH UST on behalf of the ATLAS Collaboration

International Conference Nucleus-Nucleus Collisions

14–19 May Palazzo del Cinema

Lido di Venezia, Italy

• Pb+Pb results

- Flow measurements
- Correlations of v_n harmonics: with event mean- p_T
- Xe+Xe results
 - flow harmonics p_T and centrality dependence
 - measurements

Plan

ATLAS-CONF-2016-105

ATLAS-CONF-2018-008

• insight into the initial state fluctuations via multi-particle cumulant

ATLAS-CONF-2018-011

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

- Measurements reported here use
 - Inner Detector tracker (ID) $|\eta| < 2.5$
 - Forward Calorimeter 3.2< η <4.9 and ZDC η >8.3

Flow harmonics at Pb+Pb $\sqrt{S_{NN}} = 5.02 \text{ TeV}$

- Measurement of the v_n in Pb+Pb at $\sqrt{s_{NN}} = 5.02$ TeV allowed to reach high p_T of 25 GeV, study very central collisions
- Harmonics up to *n*=7 with SP
- Weak n dependence
- The v_n at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV energies are similar

ATLAS-CONF-2016-105

√ ____ ATLAS Preliminary $0.5 < p_{-}^{a} < 5 \text{ GeV}$ 0.3 Pb+Pb $\sqrt{s_{NN}}$ =5.02 TeV, 22 µb⁻¹ $2 < |\Delta \eta| < 5$ (0-5)% 0.2 $\square V$ 0.1 10 آ م 0.25 ر **ATLAS** Preliminary Pb+Pb, 5 μb^{-1} 0.005 √s_{NN} = 5.02 TeV 0.2 ●n=2<u>A</u>n=3 in=4 ♦n=5 **⊕**n=6+n=7 20 0.15 0.1 $|\eta| < 2.5$ 0.5 < p₋ < 25.0 GeV 0.05 $\left(\right)$ 80 70 60 50 30 20 40

Mean p_T correlation with flow harmonics

- Known that the correlation exists (ALICE Collab. Phys. Rev. C 93, 034916)
- Relate initial state quantity (event mean $[p_T]$) and final state evolution (flow harmonics)
- The quantitive measure, i.e. correlation coefficient distorted by the limited event multiplicity
- A modified correlator proposed (P. Bozek Phys. Rev. C93 (2016) 044908)
 - Replaces multiplicity dependent variances by dynamic counterparts Var_{dyn}, c_k
 - → detector independent measurement

• Reproduces true R

ATLAS-CONF-2018-008

 $R = \frac{\text{cov}(v_n \{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n \{2\}^2)}\sqrt{\text{Var}([p_T])}},$ $\operatorname{cov}(v_n\{2\}^2, [p_T])$ $\sqrt{\operatorname{Var}(v_n\{2\}^2)_{\operatorname{dyn}}}\sqrt{c_k}$.

Measurement det

 $cov(v_n\{2\}^2, [p_T]) = \left\langle \frac{1}{\sum a_n} \right\rangle$

- Distinct sets of particles for $[p_T]$ and v_n
- Rapidity gaps to suppress non-flow
- Analysis in narrow bins of multiplicity in regions (unconstrained in B)
 - Mapped to charged particle multiplicit number of participants N_{part}

● Four *p*_T intervals, 0.5-5, 0.5-2, 1-2, 1-5 G significant variation of multiplicities

ABc-2.5-0.75-0.50.50.752
$$\frac{1}{2}, w_a w_c} \sum_{a,c} w_a w_c e^{in\phi_a - in\phi_c} \frac{1}{\sum_b w_b} \sum_b w_b (p_{T,b} - \langle [p_T] | 2]^2$$
 $\left[p_T \right] = \frac{1}{\sum_b w_b} \sum_b w_b p_{Tb}$ 2}2 $\left[p_T \right] = \frac{1}{\sum_b w_b} \sum_b w_b p_{Tb}$ A+C $c_k = \left\langle \frac{1}{(\sum_b w_b)^2 - \sum_b w_b^2} \sum_b \sum_{b \neq b'} w_b (p_{T,b} - \langle [p_T] \rangle) w_{b'} (p_{T,b'} - \langle [p_T] \rangle) w_{b'} (p_{$

Intermediate results: V2

- Covariances
 - Significant change with centrality
 - Highest where flow is highest
 - For v_2 negative in peripheral events
 - p_T interval affects the multiplicity and thus the the covariance values
- Similar trend for dynamical variance
 - Different p_T ordering

Intermediate results: V3

• Covariances

- Flat dependence \rightarrow very different N_{ch} dependence compared to v_2
- Very different magnitudes
- Dynamical variance
 - a similar N_{ch} dep. as V_2

Intermediate results: V4

- Covariances and dynamical variances similar behaviour to v₂ except much smaller magnitude
- Low N_{ch} not accessible

Intermediate results: Ck

- C_k quantifies magnitude of p_T fluctuations
- p_{T} interval ordering yet different than for cov and dyn. var

Correlation coefficient ρ for V_2

- Negative correlation for v₂ in peripheral events
 - \rightarrow related to ecc. ~ 1/r
- Gentle rise above $N_{\text{part}} \approx 100$ significant value of ≈ 0.28

→ stronger hydrodynamic response to initial eccentricities

- Fall in most central events
- Difference between various $p_{\rm T}$ intervals 10-20%

Correlation coefficient ρ for V_3

- Correlation for v_3 weaker compared to v_2
- Positive except for $p_T > 1$ GeV below $N_{\text{part}} \approx 100$
- Above $N_{part} \simeq 100$ steady rise
 - higher p_T threshold translates to higher p_i independent of lower threshold p_T
- A hint of decrease in most central 3% events

Correlation coefficient ρ for V_4

- Also a significant correlation seen
- A fall with rising centrality for mid central
- Lower in most peripheral a hint of increase in most central events
- Possible hint of convergence with v₃ for most central events

Theory comparison

• Theory predictions qualitatively consistent with data

Flow in Xe+Xe collisions

- Goal is to measure the flow in Xe+Xe collisions in comparison to Pb+Pb
- The p_T and centrality dependence
- Event-by-event fluctuations via higher order correlations
- Measurements performed in bins of centrality (0-80%) quantified by E_T in FCal 3.2< η <4.9
 - Mapped to N_{part} via Glauber modeling

ATLAS-CONF-2018-011

FCal E_{T} [TeV]

The $v_n(p_T)$ dependence in Xe+Xe

- Measured v_n up to n=5, wide p_T range (20 GeV for v_2)
- Typical p_T dependence is observed
 - A rise up to 3-4 GeV, then fall, higher order fall harmonics to 0, v_2 rises due to non-flow effects
 - v_2 dominant except the most central collisions
 - v_n measured with higher order correlations smaller
 - → suppressed non-flow
 - → impact of fluctuations

Centrality dependence Xe+Xevs. Pb+Pb

- Integrated v_2 is higher in most central events for Xe+Xe collisions
 - Elongated Xe shape
 - Smaller $N_{part} \rightarrow$ larger fluctuations
- Reduced value in mid central and peripheral \rightarrow surface effect \rightarrow smaller initial eccentricities \rightarrow viscous corrections
- A similar behaviour seen for v_3 and v_4
 - The increase in most central events is less pronounced
- Ratio is similar for different p_T intervals

Consistent with predictions

Centrality dependence (scaling)

- Typical pattern for centrality/Npart dependence
 - A good matching of v₂ as a function of centrality indicates geometric origins of the elliptic flow
 - N_{part} scaling for v_2 does not hold
 - Scaling with centrality or N_{part} not so obvious for higher order harmonics when looking at v_n

Centrality dependence (scaling)

- A more sensitive variable: 4-particle cumulants to check scaling for higher order harmonics
- They scale with $N_{part} \rightarrow flow$ is fluctuations driven

Flow fluctuations in Xe+Xe

- Comparisons of 2PC/SP to cumulant results: v_2 {2PC/SP} $\gg v_2$ {4} (central collisions) V_{3} {2PC/SP} \gg V₃{4}
- Indicate strong flow fluctuations
 - v_2 significant influence of fluctuation
 - V_3 result of fluctuations

Flow fluctuations in Xe+Xe and Pb+Pb

• Large number of sources \rightarrow Gaussian flow fluctuations

$$v_n\{2\} = \sqrt{\bar{v}_n^2 + \delta_n^2}, v_n\{4\} = v_n\{6\} = \bar{v}_n$$

- Comparison of $v_2{6}$ / $v_2{4}$ allows to check if fluctuations are Gaussian or not
- $v_2{6} / v_2{4} \le 1$ in Xe+Xe smaller than in Pb+Pb \rightarrow less-Gaussian nature of v_2 fluctuations

Conclusions

- Thanks to the excellent ATLAS detector and a rich dataset:

 - mean- p_{T} in Pb+Pb
 - at 5.44 TeV and compared to Pb+Pb at 5.02 TeV

More on flow measurements in Klaudia Burka's poster

More on fluctuations in Minglinag Zhou's talk: 15/05/2018, 15:00

• Measured flow harmonics up v_7 and to a very high p_T in Pb+Pb

 Measured significant correlations of flow harmonics with event **ATLAS-CONF-2018-008**

 Performed a comprehensive study of flow in Xe+Xe collisions **ATLAS-CONF-2018-011**

Backups

(A)-symmetric cumulants

- Detailed checks of correlations through (a)symmetric and normalised cumulants
 - v_2 anti-correlated with $v_3(sc_{2,3}{4})$
 - non-linear v_2 correlated with v_4 (sc_{2,4}{4} & $ac_{2,4}\{3\}$)

Xe+Xe flow measurement technologies

- (2,4, and 6) particle and Scalar Product methods
 - 2PC constructed correlation functions in $\Delta \eta$ and $\Delta \phi \rightarrow$ projected to $\Delta \phi \rightarrow$ (η -gap of 2 units)
 - REF p_T range 0.5-5 GeV
 - Fourier analysis \rightarrow di-jets contribution removed by peripheral events subtraction 4/6PC - employed cumulants technology

 - SP correlated average bearing vectors Q from FCal with q vectors from tracks (η -gap of 3.2) → resolution correction

Integrated quantities weight differential measurement for

Xe+Xe / Pb+Pb flow harmonics ratio

Vn

- **ATLAS-CONF-2018-007**
 - [1] "Xes" in v2.4 of PHOBOX MC Glauber [2] scaling from Xe-132 ("Xe"), reweighed WS in MC Glauber 3.0 ("Xerw")
 - [3] ATLAS & TOTEM measurements of σ_{tot}

Xe+Xe @ 5.44 TeV centrality calibration for QM'18 ATLAS measurements

- Characterized with ΣE_T in FCal, $|\eta| = 3.1-4.9$
- Xe-129 nuclear wavefunction from $A^{1/3}$ scaling of Sb-122 Woods-Saxon parameters [1]
 - \rightarrow alternate descriptions included by systematics [2]
 - \rightarrow co-dominant T_{AA} uncertainty in 0-50% events
- $\sigma_{NN} = 71 \text{mb} \pm 3 \text{mb} [3]$
 - Central T_{AA} values from 2CM fit with x=0.09
 - ➡ same used for ATLAS Run 1 and Run 2 Pb+Pb
- 82.4% of distribution in range $\Sigma E_T > 40$ GeV
 - conservatively free of "non-Glauber" backgrounds
 - \Rightarrow ±1% uncertainty, dominant systematic

