(Anti-)nuclei production and v_2 in heavy ion collisions at the LHC Maximiliano Puccio on behalf of ALICE Collaboration University and INFN Torino enezia

2018 Quark Matter-16th May

<u>mpuccio@cern.ch</u> - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

Question 1: When are light nuclei formed?

Question 1: When are light nuclei formed?

- Hadrons emitted from the interaction region in statistical equilibrium when the fireball reaches ERMAL MOD limiting temperature
 - Abundances fixed at chemical freeze-out
 - Freeze-out temperature $T_{\rm chem}$ is a key parameter
 - Abundance of a species $\propto \exp(-m/T_{chem})$:
 - For nuclei (large *m*) strong dependence on T_{chem}

A. Andronic, P. Braun-Munzinger, J. Stachel and H. Stoecker Phys. Lett. B607, 203 (2011), 1010.2995

Question 1: When are light nuclei formed?

- Hadrons emitted from the interaction region in statistical equilibrium when the fireball reaches
- Abundances fixed at chemical freeze-out
- Freeze-out temperature $T_{\rm chem}$ is a key parameter
- Abundance of a species $\propto \exp(-m/T_{chem})$:
 - For nuclei (large *m*) strong dependence on T_{chem}

A. Andronic, P. Braun-Munzinger, J. Stachel and H. Stoecker Phys. Lett. B607, 203 (2011), 1010.2995

• If (anti-)baryons are close in phase space after the kinetic freeze-out they can form a (anti-)nucleus (Anti-)nuclei produced at the chemical freeze-out might break up and re-form during the time span between the chemical freeze-out and the kinetic freeze-out.

J. I. Kapusta, Phys.Rev. C21, 1301 (1980)

Question 1: When are light nuclei formed?

- Hadrons emitted from the interaction region in statistical equilibrium when the fireball reaches
- Abundances fixed at chemical freeze-out
- Freeze-out temperature $T_{\rm chem}$ is a key parameter
- Abundance of a species $\propto \exp(-m/T_{chem})$:
 - For nuclei (large *m*) strong dependence on T_{chem}

A. Andronic, P. Braun-Munzinger, J. Stachel and H. Stoecker Phys. Lett. B607, 203 (2011), 1010,2995

• If (anti-)baryons are close in phase space after the kinetic freeze-out they can form a (anti-)nucleus (Anti-)nuclei produced at the chemical freeze-out might break up and re-form during the time span between the chemical freeze-out and the kinetic freeze-out.

J. I. Kapusta, Phys.Rev. C21, 1301 (1980)

Question 2: Is the hadronic phase affecting loosely bound objects?

Question 1: When are light nuclei formed?

- Hadrons emitted from the interaction region in statistical equilibrium when the fireball reaches
- Abundances fixed at chemical freeze-out
- Freeze-out temperature $T_{\rm chem}$ is a key parameter
- Abundance of a species $\propto \exp(-m/T_{chem})$:
 - For nuclei (large *m*) strong dependence on T_{chem}

A. Andronic, P. Braun-Munzinger, J. Stachel and H. Stoecker Phys. Lett. B607, 203 (2011), 1010,2995

• If (anti-)baryons are close in phase space after the kinetic freeze-out they can form a (anti-)nucleus (Anti-)nuclei produced at the chemical freeze-out might break up and re-form during the time span between the chemical freeze-out and the kinetic freeze-out.

J. I. Kapusta, Phys.Rev. C21, 1301 (1980)

Question 2: Is the hadronic phase affecting loosely bound objects?

Studying the (Anti-)(Hyper-)Nuclei production properties will help us to understand better our current description of the latest stages of a Heavy lon collision and will shed light on the nucleosynthesis mechanism at hadron colliders.

ALICE

- General purpose heavy ion experiment
- Excellent particle identification (PID) capabilities and low material budget
- Pb-Pb collisions

<u>mpuccio@cern.ch</u> - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

Most suited detector at the LHC to study the (anti-)(hyper-)nuclei produced in pp, p-A and

ALICE - (Anti-)Nuclei identification

- At $p_T \leq 1.2$ GeV/c the TPC energy loss provides an excellent PID for deuterons $\sigma_{dE/dx} \sim 6.5\%$ (in Pb-Pb collisions)
- (anti-)³He well separated from the other particle species over the full momentum range • Raw yields extracted for each p_T bin from the fit to the no distributions

<u>mpuccio@cern.ch</u> - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

ALICE - (Anti-)Nuclei identification

• At higher p_T the PID is performed using TOF to measure the β of the particle. ■ OTOF-PID~ 85 ps in Pb-Pb collisions $\sigma_{TOF-PID} \sim 120$ ps in pp collisions due to the lower precision on the event start time • Raw yields extracted for each p_{T} bin from the TOF mass spectra fit

mpuccio@cern.ch - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

Elliptic flow was measured using the scalar product method

- Particles measured by VOA $(2.8 < \eta < 5.1)$ and VOC $(-3.7 < \eta < -1.7)$ as reference.
- Deuteron candidates are the particles of interest ($|\eta| < 0.8$)

$$v_n\{SP\} = \frac{\langle u_{n,i}(p_{\mathrm{T}},\eta) \cdot \frac{Q_n^*}{M} \rangle}{\sqrt{\langle \frac{Q_{n,A}^*}{M_A} \cdot \frac{Q_{n,B}^*}{M_B} \rangle}}$$

The Blast Wave model¹, fitted to the spectra and the v_2 of pions, kaons and protons reproduces reasonably well both the v_2 and the spectra of deuterons Hint for a common kinetic freeze-out with lighter particles!

¹E. Schnedermann et al., 10.1103/PhysRevC.48.2462; STAR, 10.1103/PhysRevLett.87.182301

Elliptic flow was measured using the scalar product method

- Particles measured by VOA $(2.8 < \eta < 5.1)$ and VOC $(-3.7 < \eta < -1.7)$ as reference.
- Deuteron candidates are the particles of interest ($|\eta| < 0.8$)

$$v_n\{SP\} = \frac{\langle u_{n,i}(p_{\mathrm{T}},\eta) \cdot \frac{Q_n^*}{M} \rangle}{\sqrt{\langle \frac{Q_{n,A}^*}{M_A} \cdot \frac{Q_{n,B}^*}{M_B} \rangle}}$$

The Blast Wave model¹, fitted to the spectra and the v_2 of pions, kaons and protons reproduces reasonably well both the v_2 and the spectra of deuterons Hint for a common kinetic freeze-out with lighter particles!

¹E. Schnedermann et al., 10.1103/PhysRevC.48.2462; STAR, 10.1103/PhysRevLett.87.182301

<u>mpuccio@cern.ch</u> - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

- v_2 in A-A collisions
- Flattening of the B₂ in peripheral collisions Hint of system size dependency in the nuclei production mechanism \rightarrow Completely flat B₂ in p-Pb and pp vs multiplicity

mpuccio@cern.ch - (Anti-)Nuclei production and v2 at the LHC - 16/05/18

In general, simple coalescence does not describe ALICE deuteron measurement in Pb-Pb collisions. • Different observation made at lower energies, where simple coalescence is able to describe deuteron

The coalescence parameter for a nucleus *i* with A nucleons is defined as:

 $E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d} p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$

 $\bullet B_2 = \frac{E_{\rm d} \frac{\mathrm{d}^3 N_{\rm d}}{\mathrm{d} p_{\rm p}^3}}{\left(E_{\rm p} \frac{\mathrm{d}^3 N_{\rm p}}{\mathrm{d} r^3}\right)^2}$

- Flat coalescence parameter
- $V^{d_2}(p^{d_T}) = 2V_2^{p}(2p^{p_T})$

deuterons

 $B_2 \, ({\rm GeV}^2/c^3)$

- v_2 in A-A collisions
- Flattening of the B₂ in peripheral collisions Hint of system size dependency in the nuclei production mechanism \rightarrow Completely flat B₂ in p-Pb and pp vs multiplicity

mpuccio@cern.ch - (Anti-)Nuclei production and v2 at the LHC - 16/05/18

In general, simple coalescence does not describe ALICE deuteron measurement in Pb-Pb collisions. • Different observation made at lower energies, where simple coalescence is able to describe deuteron

The coalescence parameter for a nucleus *i* with A nucleons is defined as:

 $E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d} p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$

 $B_2 = \frac{E_{\rm d} \frac{\mathrm{d}^3 N_{\rm d}}{\mathrm{d} p_{\rm p}^3}}{\left(E_{\rm p} \frac{\mathrm{d}^3 N_{\rm p}}{\mathrm{d} n^3}\right)^2}$

- Flat coalescence parameter
- $V^{d_2}(p^{d_T}) = 2V_2^{p}(2p^{p_T})$

deuterons

 $B_2 \, (\text{GeV}^2/c^3)$

- In general, simple coalescence does not describe ALICE d
- Different observation made at lower energies, where v_2 in A-A collisions
- Flattening of the B₂ in peripheral collisions Hint of system size dependency in the nu Completely flat B₂ in p-Pb and pp vs cocc

mpuccio@cern.ch - (Anti-)Nuclei production and v2 at the LHC - 16/05/18

(Anti-)³He v₂ in Pb-Pb/

The *v*₂ of ³He was measured using the Event-Plane method:

- Reconstruction of the Event Plane (estimator of the Reaction Plane)
- 2. v_2 computed as:

$$v_2 = \frac{1}{R_2} \frac{\pi}{4} \frac{N_{\text{in-plane}} - N_{\text{out-of-plane}}}{N_{\text{in-plane}} + N_{\text{out-of-plane}}}$$

R₂ is the event plane resolution

<u>mpuccio@cern.ch</u> - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

(Anti-)³He v₂ in Pb-Pb

The *v*² of ³He was measured using the Event-Plane method:

- 1. Reconstruction of the Event Plane (estimator of the Reaction Plane)
- 2. v_2 computed as:

$$v_2 = \frac{1}{R_2} \frac{\pi}{4} \frac{N_{\text{in-plane}} - N_{\text{out-of-plane}}}{N_{\text{in-plane}} + N_{\text{out-of-plane}}}$$

R₂ is the event plane resolution

ALI-PREL-145075

Different behaviour with respect to the deuteron v_2 !

 The overall agreement of the Blast-Wave¹ fitted to lighter species prediction for ³He is better in the most central collisions

• The simple coalescence expectation (green points) gets closer to the measured ³He for 40-60% centrality

 More statistics in the next Pb-Pb run and in the Run3 and Run4 of LHC will help to disentangle this discrepancy!

¹E. Schnedermann et al., 10.1103/PhysRevC.48.2462; STAR, 10.1103/PhysRevLett.87.182301

(Anti-)³He v₂ in Pb-Pb

The *v*² of ³He was measured using the Event-Plane method:

- 1. Reconstruction of the Event Plane (estimator of the Reaction Plane)
- 2. v_2 computed as:

$$v_2 = \frac{1}{R_2} \frac{\pi}{4} \frac{N_{\text{in-plane}} - N_{\text{out-of-plane}}}{N_{\text{in-plane}} + N_{\text{out-of-plane}}}$$

R₂ is the event plane resolution

mpuccio@cern.ch - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

- Mast-Wave¹ fitted to lighter species The overall agreement of prediction for ³He is how in the most central collisions
- The simple coaler of expectation (green points) gets closer to the measured r 40-60% centrality
 - S in the next Pb-Pb run and in the Run3 and C will help to disentangle this discrepancy! More st Run/

Different behaviour with resper v > 1e deuteron $v_2!$

. Schnedermann et al., 10.1103/PhysRevC.48.2462; STAR, 10.1103/PhysRevLett.87.182301

(Anti-)4He production in Pb-Pb

- →We "rediscovered it" also in the new data sample Pb-Pb@5.02TeV!
- Its production rate is compatible with that of ⁴He

• The production of the heaviest anti-nucleus ever seen has been measured in Pb-Pb@2.76TeV

(Anti-)4He production in Pb-P

- Its production rate is compatible with that of ⁴He The exponential decrease in nuclei production rate (predicted by the Thermal model) is confirmed!

<u>mpuccio@cern.ch</u> - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

The standard model of particle production in A-A?

- Thermal model is very successful in reproducing the particle yields measured by ALICE in Pb-Pb collisions at √s_{NN}=2.76 TeV
- (Anti-)nuclei and even hypernuclei fit in the thermal picture
- This result, together with the successful Blast-Wave fit to deuteron data suggest that nuclei production happens at the hadronisation, when all the other particles are formed.

The current formulations of the thermal model seems to be the standard model of particle production in Pb-Pb collisions

The standard model of particle production in A-A?

- The larger data sample collected in LHC Run2 and improved reconstruction and analysis techniques reduced the uncertainties.
- The tensions with the thermal model fit to our new preliminary results are now larger

5.7σ

- GSI-Heidelberg 4.3σ
- SHARE 3 5.0σ

Does the model needs further tuning? Eigen volume corrections, particle lists and corresponding branching ratios, rescattering, S-matrix approach...

- Is this smooth transition suggesting a single description for the nucleosynthesis in HEP?

• Simple coalescence works in small systems while thermal models describe better the Pb-Pb data Hint of deuteron suppression in central collisions (Still not significant with the current uncertainties)

- Is this smooth transition suggesting a single description for the nucleosynthesis in HEP?

• Simple coalescence works in small systems while thermal models describe better the Pb-Pb data Hint of deuteron suppression in central collisions (Still not significant with the current uncertainties)

- Is this smooth transition suggesting a single description for the nucleosynthesis in HEP?

• Simple coalescence works in small systems while thermal models describe better the Pb-Pb data Hint of deuteron suppression in central collisions (Still not significant with the current uncertainties)

- Is this smooth transition suggesting a single description for the nucleosynthesis in HEP?

<u>mpuccio@cern.ch</u> - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

If the factor 5 change in the ³He/p between small systems and Pb-Pb is confirmed by studies on larger data samples, then a unified description will be more challenging.

The coalescence parameter evolves smoothly as a function of multiplicity with no discontinuity between different colliding systems

 Another hint of a system size aware production mechanism

The coalescence parameter evolves smoothly as a function of multiplicity with no discontinuity between different colliding systems

 Another hint of a system size aware production mechanism

This behaviour has been qualitatively described by parametrising the coalescence parameter using the system HBT radius R:

$$\frac{B_2}{\text{GeV}^2} \approx 0.068 \left[\left(\frac{R(p_{\text{T}})}{1 \,\text{fm}} \right)^2 + 2.6 \left(\frac{b_2}{3.2 \,\text{fm}} \right)^2 \right]$$

where the numerical factors come from approximations of the nucleus and nucleons sizes

(Anti-)nuclei production measurements at the LHC challenge the traditional production models Currently thermal model describes sufficiently well the nuclei production (from proton to ⁴He) However the discrepancy between the global thermal model fit and data is slightly larger • Simple coalescence works only in small systems

(Anti-)nuclei production measurements at the LHC challenge the traditional production models • Currently thermal model describes sufficiently well the nuclei production (from proton to ⁴He) However the discrepancy between the global thermal model fit and data is slightly larger Simple coalescence works only in small systems

Particle chemistry evolution with multiplicity suggests that a single mechanism could be behind the production of hadrons in all systems colliding at the LHC

• For (anti-)nuclei: system size aware hadron coalescence models?

(Anti-)nuclei production measurements at the LHC challenge the traditional production models • Currently thermal model describes sufficiently well the nuclei production (from proton to ⁴He) However the discrepancy between the global thermal model fit and data is slightly larger Simple coalescence works only in small systems

production of hadrons in all systems colliding at the LHC

• For (anti-)nuclei: system size aware hadron coalescence models?

new models

- Deuteron and ³He v_2 in peripheral collisions \rightarrow next Pb-Pb run at the end of this year!
- ³He and ⁴He production at very small multiplicities (in p-Pb and Pb-Pb) \rightarrow Run3 and beyond!

- Particle chemistry evolution with multiplicity suggests that a single mechanism could be behind the
- Deep scan of all the production properties of nuclei will help to constrain and understand these

(Anti-)nuclei production measurements at the LHC challenge the traditional production models • Currently thermal model describes sufficiently well the nuclei production (from proton to ⁴He) • However the discrepancy between the global thermal model fit and data is slightly larger Simple coalescence works only in small systems

production of hadrons in all systems colliding at the LHC

• For (anti-)nuclei: system size aware hadron coalescence models?

new models

- Deuteron and ³He v_2 in peripheral collisions \rightarrow next Pb-Pb run at the end of this year!
- ³He and ⁴He production at very small multiplicities (in p-Pb and Pb-Pb) \rightarrow Run3 and beyond!

- Particle chemistry evolution with multiplicity suggests that a single mechanism could be behind the
- Deep scan of all the production properties of nuclei will help to constrain and understand these

The quest for the understanding of nuclei production is still open, but today we have a much clearer idea of what are the limits of the current models.

B₃ and proton spectra mathematical bias

the mathematical bias coming from the proton spectra change as a function of multiplicity. This effect has been already observed in pp (see M. Colocci talk) and is also affecting the with the finest centrality bins

ALI-PREL-157672

- The rising B₃ in Pb-Pb and p-Pb collisions can be partially explained, in the wide centrality bins, by
- determination of B_A for rare species, where it is not possible to extract the coalescence parameter

B₃ and proton spectra mathematical bias

the mathematical bias coming from the proton spectra change as a function of multiplicity. This effect has been already observed in pp (see M. Colocci talk) and is also affecting the with the finest centrality bins

ALI-PREL-157672

- The rising B₃ in Pb-Pb and p-Pb collisions can be partially explained, in the wide centrality bins, by
- determination of B_A for rare species, where it is not possible to extract the coalescence parameter

Deuteron and ³He production spectra in Pb-Pb@5TeV

pp

The p_{T} -differential production spectrum is well fitted by the Levy-**Tsallis** function

$$\frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} = p_{\mathrm{T}} \frac{\mathrm{d}N}{\mathrm{d}y} \frac{(n-1)(n-2)}{nC(nC+m_0(n-2))} \left(1 + \frac{m_{\mathrm{T}} - m_0}{nC}\right)^{-1}$$

where m_0 is the nominal mass of the deuteron and n,C are fit parameters.

Pb-Pb

- The Blast-Wave (BW) function fits well the data.
- Characteristic hardening of the spectrum with increasing centrality.
 - Radial flow pattern
- These fits are used for the extrapolation of the yield to the unmeasured region at low and high p_{T} .

Matter/anti-matter/atios

ALICE-PUBLIC-2017-006

<u>mpuccio@cern.ch</u> - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

For a nucleus X with mass number A, both coalescence and thermal models predict:

$$\frac{\overline{X}}{\overline{X}} \approx \left(\frac{\overline{p}}{p}\right)^A$$

The anti-proton over proton ratio is compatible with unity at the LHC ($\mu_B \approx 0$ at mid rapidity)

Measured anti-nuclei over nuclei ratios are in line with theory expectations

Correction for knock-out nuclei

ALI-PREL-130203

0.8 DCA_{xy} (cm)

- Fit on a range of DCA_{xy} wider than the cut used to extract the spectra
- Variable binning used to account for the shape of the primary particles around 0
- Primary fraction extracted from the fitted primary particles template integrated in the DCA_{xv} range corresponding to the analysis cut

Primary particles template and particle from material templates are taken from the MC.

Blast-Wave fit to nuclei spectra

(A)

(B)

The Blast-Wave combined fit to the ³He and deuteron spectra (A) shows a good agreement with the measurements.

Common freeze-out conditions for light nuclei

The Blast-Wave combined fit to pions, kaons, protons and light nuclei (B) works as well

Common freeze-out conditions even with lighter species!

Coalescence in p-Pb collisions

See M. Colocci talk for more on this topic!

mpuccio@cern.ch - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

Simple coalescence predictions hold in p-Pb collisions:

 B_2 is p_T independent in all the multiplicity bins investigated

Coalescence in p-Pb collisions

See M. Colocci talk for more on this topic!

<u>mpuccio@cern.ch</u> - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

Simple coalescence predictions hold in p-Pb collisions:

- B_2 is p_T independent in all the multiplicity bins investigated
- Mean p_T of the produced deuterons follow the coalescence expectation
 - The Blast Wave expected mean transverse momentum is overestimating systematically our measurements

Coalescence in p-Pb collisions

See M. Colocci talk for more on this topic!

mpuccio@cern.ch - (Anti-)Nuclei production and v_2 at the LHC - 16/05/18

Simple coalescence predictions hold in p-Pb collisions:

- B_2 is p_T independent in all the multiplicity bins investigated
- Mean p_T of the produced deuterons follow the coalescence expectation
 - The Blast Wave expected mean transverse momentum is overestimating systematically our measurements

Simple coalescence successfully describes the nuclei production in small systems

Improving the (anti-)nuclei production systematics

- - correction to our measurements.

See Z. Yasin poster for more on this topic

AMPT with enabled rescattering (AR

