Measurement of long-range correlations in pp collisions characterized by presence of a Z boson with the ATLAS detector

Prof. Brian Cole Columbia University on behalf of ATLAS

The ridge in Z-tagged 8 TeV pp collisions

Prof. Brian Cole Columbia University on behalf of ATLAS

Many thanks to organizers for bringing us to this beautiful place

Motivation

 We now have ample evidence of multi-particle azimuthal correlations in pp collisions over a

wide range of multiplicities.

Comparisons with p+Pb data,
 mass dependence, ... strongly
 suggestive of collectivity

⇒But we must thoroughly test this interpretation.

Motivation (2)

- But, what about alternatives:
- glasma, CGC/BEC, MPI+string interactions, ...

- More generally, can ask the question:
- Is there any "coupling" between ridge phenomenon and hard or semi-hard processes
 - ⇒ Study using pp events with Z production
 - ⇒ Large-Q² process, but without back-to-back jets
- Even if ridge reflects collectivity, does requiring a hard process change the geometry of the initial state?

The measurement

- Measure two-particle azimuthal correlations in 8
 TeV pp collisions that contain Z boson
- $-L_{int} = 19.4 \text{ fb}^{-1} \text{ from Run 1 (2014)}$
- $-Z \rightarrow \mu^{+}\mu^{-}$ with 80 < $M_{\mu\mu}$ < 100, p_{T}^{μ} > 20 GeV, $|\eta_{\mu}|$ < 2.4
- ⇒muon inner detector tracks excluded from 2PC
- high-luminosity data, µ ~ 20
- ⇒need to correct for background due to pileup
- ⇒evaluated using event mixing

Pileup background

- Use mixed events to obtain distribution of # background tracks
 - as a function of Zevent (direct) N_{trk}
- -and $v = \langle N_{trk}^{bkgd} \rangle$
- N_{trk} response matrices

Pileup background

- Use mixed events to obtain distribution of # background tracks
 - as a function of Zevent (direct) N_{trk}
- -and $v = \langle N_{trk}^{bkgd} \rangle$
- ⇒Unfold N_{trk} distributions

- Pileup can add multiple tracks from same collision
- background not flat in $\Delta \phi$
- Pileup has different η distribution than Z events
 - due to v-dependent effect of $\Delta z \sin \theta$ cut applied to tracks
 - ⇒ Need to measure two-particle correlations for both correlated and uncorrelated pileup & subtract

- Pileup can add multiple tracks from same collision
- background not flat in $\Delta \phi$
- Pileup has different η distribution than Z events
- due to v-dependent effect of $\Delta z \sin \theta$ cut applied to tracks
- ⇒ Need to measure two-particle correlations for both correlated and uncorrelated pileup & subtract

- Apply template fit method using 20 < N_{trk} < 30 (after correction) as peripheral reference
- -only v₂ term included in the ridge contribution
- ⇒as in inclusive pp collisions @ 5 and 13 TeV, the two-particle correlation function well described by scaled peripheral + cos(2φ) term

 Comparison of v₂ obtained from template analysis before and after pileup correction

- Corrected: versus corrected multiplicity
- Uncorrected: versus direct multiplicity
- ⇒ essentially no multiplicity dependence to either
- ⇒ subtraction reduces v₂ by 20%

Two-particle correlation results

- Main physics result:
- -v₂ versus corrected N_{trk} compared to previous minimum-bias pp results @ 5 and 13 TeV
- ⇒reminder: no √s dependence observed

- ⇒ Z-tagged p_T-integrated v₂ 8±6% higher than in minimum-bias pp collisions
- ⇒No multiplicity dependence seen

Summary, conclusions

- ATLAS has carried out a measurement of longrange two-particle azimuthal correlations in Z-tagged pp collisions @ 8 TeV
- -L_{int} = 19.4 fb⁻¹ from Run 1 (2014), Z → $\mu^+\mu^-$
- Goal of the measurement:
- -test our understanding of the origin of ridge
- ⇒is it associated with/affected by hard or semi-hard processes *a la* Glasma?
- ⇒does requiring hard-scattering process change initial geometry, MPI, ... so as to effect 2PC?
 - » no predictions prior to measurement
- Observe that Z-tagged collisions have 8±6% larger p_T-integrated v₂ than minimum-bias pp
- -similar to minimum-bias, no variation with N_{trk}