Elliptic flow coefficients of identified hadrons in p-Pb and pp collisions

Vojtěch Pacík
(Niels Bohr Institute, Copenhagen)

on behalf of the ALICE Collaboration
Flow v_n coefficients & identified hadrons

- Constraining medium properties & testing initial conditions

Initial geometry & event-by-event fluctuations cause azimuthal anisotropy wrt. common symmetry plane

$$E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_T dp_T dy} \left[1 + 2 \sum_{n=1}^{\infty} v_n \cos (n(\varphi - \Psi_n)) \right]$$

[ALICE, JHEP 09 (2017) 032]

Pb-Pb $s_{NN} = 2.76$ TeV
Centrality: 20-30% $|n| < 0.8$

ALICE
- $v_2(2,|n|<0.8)$
- $v_3(2,|n|<0.8)$

Hydrodynamics
- $v_2(2)$, MC-KLN & $\eta/s=0.20$
- $v_2(2)$, MC-Gib & $\eta/s=0.08$
- $v_2(2)$, Trento & $\eta/s(T)$
- $v_2(2)$, AMPT & $\eta/s=0.08$

ALICE-DER-139356
Flow v_n coefficients & identified hadrons

- Constraining medium properties & testing initial conditions
- Studying the particle production in different p_T regions
 - **Mass ordering** (hydrodynamic flow, hadron re-scattering)
 - **Baryon/meson grouping** (recombination/coalescence)

Initial geometry & event-by-event fluctuations cause azimuthal anisotropy wrt. common symmetry plane

$$E \frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left[1 + 2 \sum_{n=1}^{\infty} v_n \cos \left(n(\phi - \Psi_n) \right) \right]$$

[ALICE, JHEP 09 (2017) 032]

ALICE Pb–Pb $\sqrt{s_{NN}} = 5.02$ TeV $|y| < 0.5$, 10-20%

[arXiv:1805.04390]

Mass ordering

Baryon/meson grouping
What about small systems?

Pb-Pb collisions

Mass ordering & baryon/meson grouping

v2, v3, v4 signal

Medium induced collectivity

Initial geometry, hydro evolution, E/e fluctuations

ALICE Pb–Pb $\sqrt{s_{NN}} = 5.02$ TeV

$|y| < 0.5, 10\text{-}20\%$

[arXiv:1805.04390]
What about small systems?

Pb-Pb collisions

Medium induced collectivity
- Initial geometry, hydro evolution, EbE fluctuations
- Mass ordering & baryon/meson grouping

v₂, v₃, v₄ signal

Flow-like signatures
- Mass ordering? (What about grouping?)
- Small droplet(s) of QCD medium?
- No clear picture

ALICE Pb–Pb \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)
- \(|y| < 0.5, 10-20\%\)

Flow-like signatures

[arXiv:1805.04390]

Mass ordering

- Mass ordering described by 3+1D viscous hydrodynamics with different initial conditions
- Parton based Gribov-Regge multiple scattering (flux tubes)
- MC Glauber initial conditions

Higher precision results needed to validate and distinguish theoretical models
Collectivity in small systems
What is the origin? Initial or final state effects?
A Large Ion Collider Experiment

Multi-purpose detector at the LHC with unique particle identification capabilities and tracking down to very low momenta

- **Inner Tracking System (ITS)**
 - Tracking
 - Triggering

- **Time-Projection Chamber (TPC)**
 - Tracking
 - Particle identification

- **Time-of-flight detector (TOF)**
 - Particle identification

- **V0 detector**
 - $2.8 < \eta < 5.1$ (V0A : Pb-going)
 - $-3.7 < \eta < -1.7$ (V0C : p-going)
 - Triggering
 - Event multiplicity determination

Minimum-bias data from LHC Run II
- 5.02 TeV p-Pb & 13 TeV pp
Particle identification & reconstruction

A. Identification of π^{\pm}, K^{\pm}, and $p(\bar{p})$

- Utilising combined TPC & TOF detector response
- Track-by-track basis with purity > 80%

B. Reconstruction of ϕ, K^0_S, and $\Lambda(\bar{\Lambda})$

- Short-lived & no charge - cannot be measured directly
- Reconstruction via decay products on statistical basis
 - Particle identification of products
 - Constraining decay topology

Hadronic decays

$\phi \rightarrow K^+ + K^-$

$K^0_S \rightarrow \pi^+ + \pi^-$

$\Lambda \rightarrow p + \pi^-$

$\bar{\Lambda} \rightarrow \bar{p} + \pi^+$
\(v_n \) vs. invariant mass method

- \(v_n \) extracted from 2-particle Q-cumulants using Generic Framework (GF) implementation

 \[v_n \{2\}(p_T) = \frac{d_n \{2\}(p_T)}{\sqrt{c_n \{2\}}} = \frac{\langle v_n(p_T) \cdot v_n \rangle}{\sqrt{\langle v_n \cdot v_n \rangle}} \quad (h^\pm, \pi^\pm, K^\pm, p(\bar{p})) \]

- Particles selected in \(|\eta| < 0.8\) (\& RPF in \(0.3 < p_T < 3\ \text{GeV/c}\))

- Reconstructed candidates consisting of signal particles & combinatorial background

 \[v_n^{\text{tot}} \{2\}(p_T, m_{\text{inv}}) = \frac{d_n \{2\}(p_T, m_{\text{inv}})}{\sqrt{c_n \{2\}}} \quad (K_S^0, \Lambda(\bar{\Lambda}), \phi) \]

- \(v_n \) coefficient of signal particles extracted using \(v_n \) vs. inv. mass method

 - Based on additivity of \(v_n \) coefficients weighted by their fractions

 \[v_n^{\text{tot}}(m_{\text{inv}}) = N_{\text{sig}}^{\text{tot}}(m_{\text{inv}}) \cdot v_n^{\text{sig}} + N_{\text{bg}}^{\text{tot}}(m_{\text{inv}}) \cdot v_n^{\text{bg}}(m_{\text{inv}}) \]
Non-flow suppression

- Non-flow consisting of correlation not related to common symmetry plane
- Resonance decays, jets, ...
- Pseudorapidity separation partially suppresses short-range correlations

\[|\Delta \eta| > 0.4 \]

- Additional non-flow subtraction performed on cumulants using MB pp collisions

\[
v_2^{pPb,\text{sub}}(p_T) = \frac{d_2^{pPb} \{2\} - k \cdot d_2^{pPb} \{2\}}{\sqrt{c_2^{pPb} \{2\} - k \cdot c_2^{pPb} \{2\}}}\]

- Contribution of non-flow scaled by mean event multiplicities

 - Based on assumption for non-flow \[[\text{Voloshin et al., arXiv:0809.2949}] \]

\[
\delta_n \propto \frac{1}{M} \quad \Rightarrow \quad k = \frac{\langle M \rangle^{pPb}}{\langle M \rangle^{pPb}}
\]
$v_2(p_T)$ coefficients of identified hadrons in 5.02 TeV p-Pb collisions
Non-flow subtracted $v_2(p_T)$ of identified hadrons

- $v_2(p_T)$ of identified hadrons in 5.02 TeV p-Pb using Run II data
- Non-flow subtracted results using MB 13 TeV pp collisions
- First ALICE measurement of K^0_S, $\Lambda(\Lambda)$ and ϕ v_2 in small systems
- Similar features as Pb-Pb measurements
 - Clear mass ordering (low p_T region)
 - Qualitatively predicted by hydrodynamic models
 - Indication of baryon/meson grouping (intermediate p_T)
Multiplicity class evolution

Mass ordering and baryon/meson grouping persists but slowly vanishes towards low multiplicity events
Examination of NCQ scaling

- Test of number of constituent quarks (NCQ) scaling properties originally investigated by RHIC experiments

Only approximate NCQ (and KE_T) scaling similar to previously reported results in Pb-Pb collisions

$$KE_T = m_T - m_0 = \sqrt{p_T^2 - m_0^2} - m_0$$
Multiplicity evolution of NCQ scaling

Approximate NCQ-scaling holds across all multiplicity classes.
Conclusion

- Results of p_T-differential $v_2\{2\}$ of identified hadrons in 5.02 TeV p-Pb collisions in LHC Run II
 - First ALICE measurement of K^0_S, $\Lambda(\bar{\Lambda})$ and ϕ meson $v_2(p_T)$ in small systems
 - Precision measurement of π^\pm, K^\pm and $p(\bar{p})$ v_2 in p-Pb collisions
 - Non-flow subtraction using minimum-bias 13 TeV pp collision

- Features observed in p-Pb collisions similar to previously reported Pb-Pb measurements
 - Low p_T region, clear mass ordering - predicted by hydrodynamic models
 - Intermediate p_T, indication of baryon/meson grouping
 - Approximate NCQ & KE$_T$ scaling holds

- Collective phenomena present in small systems. Initial and final state effects?
 - Current results present tighter constrain for future comparisons of theoretical models
 - Will help to disentangle the origin of the observed collectivity

--- Thank you for your attention! ---
— Back-up —
Two-particle Q-cumulants

- Flow coefficients v_n extracted from $\{2\}$-particle Q-cumulants using Generic Framework (GF) implementation
- Construction of (single event) flow vectors from selected particles in $|\eta| < 0.8$

 A. Reference particles (RFP)
 - Un-identified charged hadrons in $0.3 < p_T < 5$ GeV/c
 - $Q_n = \sum_{i \in \text{RFP}} w_i \exp(in\varphi_i)$, $W_i = \sum_{i \in \text{RFP}} w_i$

 B. Particles of interest (POI)
 - Differential measurement (wrt. pt range, species, …)
 - Per-particle weights $w_k = w_k(\eta, \varphi)$ for correction

2-particle correlations \to 2-particle cumulants \to v_n coefficients

- $\langle 2 \rangle_n = \langle \cos n(\varphi_i - \varphi_j) \rangle = \frac{Q_n Q_n^*}{W_i^2}$
 - $c_n\{2\} = \langle \langle 2 \rangle \rangle_n = \langle v_n^2 \rangle$
 - $v_n\{2\}(p_T) = \frac{d_n\{2\}(p_T)}{\sqrt{c_n\{2\}}}$

- $\langle 2' \rangle_n = \langle \cos n(\psi_j - \varphi_i) \rangle = \frac{p_n Q_n^*}{W_j W_i}$
 - $d_n\{2\}(p_T) = \langle \langle 2' \rangle \rangle_n = \langle v_n(p_T) \cdot v_n \rangle$

\[\langle \ldots \rangle \ldots \text{averaged over all particles in single event} \quad \langle \langle \ldots \rangle \rangle \ldots \text{averaged over all particles AND all events} \]
Multiplicity class dependence

ALICE Preliminary
$p-Pb \mid S_{NN} = 5.02$ TeV
$|\eta| < 0.8$

$V_2^{q\phi}$ (2, $|\Delta\eta| > 0.4$)

p_T (GeV/c)

Quark Matter | May 14, 2018 | Venice | 18
Examination of KEₜ scaling

\[KEₜ = mₜ - m₀ = \sqrt{pₜ^2 - m₀^2} - m₀ \]

As for NCQ, KEₜ scaling holds in central collisions and slowly vanishes in low multiplicity events.
NCQ scaling in Pb-Pb at 5.02 TeV

[arXiv:1805.04390]

Vojtěch Pacík | Elliptic flow coefficients of identified hadrons in p-Pb and pp collisions

Quark Matter | May 14, 2018 | Venice | 20
Comparison to published results

Comparison to CMS results form [PLB 724 (2013) 213-240]

- Differences in methodology
 - v_2 extraction (2PC vs Q-Cumulants)
 - Event classification (selection)
 - Pseudo-rapidity regions

- Similar non-flow subtraction prescription …

\[
V_{n\Delta} = V_{n\Delta} - V_{n\Delta}(N_{\text{trk}}^{\text{offline}} < 20) \times \frac{N_{\text{assoc}}(N_{\text{trk}}^{\text{offline}} < 20)}{N_{\text{trk}}^{\text{offline}}} \times \frac{Y_{\text{jet}}(N_{\text{trk}}^{\text{offline}} < 20)}{Y_{\text{jet}}}. \tag{9}
\]

- … but additional scaling factor (enhancement of near-side jet)

Only qualitative comparison - differences expected