Implications for small-system collectivity from wide-range soft physics measurements in p+A collisions by PHENIX

Qiao Xu for the PHENIX Collaboration 2018/05/14

Motivation

p+A collisions ->
Cold Nuclear Effect &
Important handle for collectivity

Motivation

arxiv:1805.02973, submitted to Nature Physics

Extend collectivity study to different kinetic ranges in p+A

Do we have more soft observables?

A wide range of longitudinal observables are needed to understand soft processes in p+A

Question: How is the flow related to longitudinal particle production?

Longitudinal dynamics

Question: How do fluctuations contribute to the collectivity?

Flow fluctuations

Question: In what degrees of freedom does the particle flow collectively in p+A?

Flow for identified particles

A Coherent Picture in p+A!

Small system measurements in PHENIX

- Midrapidity: DC, PC, TOF -> tracking and PID
- Forward: BBC, FVTX -> triggering, event selection, correlations with midrapidity particles, event plane determination
- Muon arm: FVTX, Muon Tracking, Muon ID -> heavy flavor tracking and identification

Longitudinal dynamics

v₂(η) vs dN_{ch}/dη in Geometry Control Scan

- d+Au scales well, but p+Au does not at backward rapidity
- 3D hydrodynamics quantitatively describes the data in p+Au

 The event plane is measured in -3.9 < η < -3.1

Wide rapidity range

v₂(η) at different centrality bins in p+Au

- $v_2(\eta)$ is enhanced at backward rapidity where the multiplicities are higher
- Peripheral events exhibit more non-flow effect

Longitudinal dynamics

- Larger flow in backward region than in forward region
- Flow and longitudinal particle productions do not scale well in p+A
- non-flow effects are important

Flow fluctuations

Multi-particle correlations in p+Au

Multi-particle correlation suppresses non-flow quite effectively

Multi-particle correlations in d+Au

• $v_2{4} \approx v_2{6}$, strong indication of collectivity

Flow fluctuation from multi-particle correlations

• $v_2{2}[\eta \text{ gap}]^2 \approx v_2^2 + \sigma_{v_2}^2$ $v_2{4}^2 \approx v_2^2 - \sigma_{v_2}^2$

Phys. Rev. Lett. 120, 062302 (2018)

- If fluctuation σ_{v2} > mean v_{2} , c_{2} {4} is positive
- Implies collectivity in p+Au is dominated by fluctuations, while d+Au is not
- AMPT (A Multi-phase transport model) describes the sign

Multi-particle correlations in p+A

 p+A at RHIC enengy has more contributions from fluctuations than LHC energy

Flow fluctuations

- Small variance limit breaks in p+Au but not d+Au
- Flow fluctuations are the main source of collectivity in p+Au forward/backward rapidities

Flow for identified particles

v₂(p_T) KET scaling for identified π[±] and protons

- Approximate quark number scaling, similar to A+A collisions
- The scaling in larger systems holds better generally

v₂(p_T) for heavy flavor muons

- First measurement of heavy flavor v₂ in small collision systems at RHIC
- Heavy quarks flow even in small collision systems!

R_{pAu} for direct photons

- Central p+Au collisions shows direct photon R_{pAu} > 1
- Data suggests thermal photon yields

Flow for identified particles

- Identified particles flow in a wide range in p+A at RHIC
- Thermal photons yields indicates the existence of QGP
- Flow shows quark number degrees of freedom in p+A

Summary and Conclusions

- Flow and longitudinal particle productions do not scale well in p
 +A and non-flow effects are important
- Small variance limit breaks in p+A and fluctuations are the main source of collectivity
- Identified particles flow in a wide range in p+A at RHIC
- Flow shows quark number degrees of freedom in p+A
- Hydrodynamics describes (nearly) all the observables
- Any model should describe all the observables simultaneously

Back Up

p+A collisions ->

Earlier: Cold Nuclear Effect

Motivation

Now: Important handle for collectivity

Phys. Rev. Lett. 115, 142301 (2015)

Some other models also work

At RHIC, two important control experiments are done:

- Geometry Control Scan -> Change the projectiles and/or targets
- Beam Energy Scan on d+Au -> Ranges from 20 GeV to 200 GeV

Complete sets of GCS

 $\eta/s = 0.08$ in both models

hydrodynamical models provide a simultaneous and quantitative description of the data in all three systems.

arxiv:1805.02973

At RHIC, two important control experiments are done:

- Geometry Control Scan -> see Sylvia's presentation tomorrow
- Beam Energy Scan on d+Au -> ranges from 20 GeV to 200 GeV

$v_2(p_T)$ for identified π^{\pm} and protons

- $v_2(\pi^{\pm}) > v_2(proton)$ at $p_T < 1.5$ GeV/c, reversed at higher p_T
- The hydro model describes the low-p_T mass-ordering in v₂(p_T) well

v₂(η) vs dN_{ch}/dη in Geometry Control Scan

Wide rapidity range

- d+Au scales well, but p+Au does not at backward rapidity, non-flow becomes more significant
- 3D hydrodynamics quantitatively describes the data in p+Au

 The event plane is measured in -3.9 < η < -3.1

$v_2(\eta)$ vs $dN_{ch}/d\eta$ in Beam Energy Scan

Phys. Rev. C 96, 064905 (2017) d+Au $\sqrt{s_{NN}}$ = 200 GeV 0-5% (a) $\frac{1}{2}$ d+Au $\sqrt{s_{NN}}$ = 62.4 GeV 0-5% (b) $\frac{1}{2}$ d+Au $\sqrt{s_{NN}}$ = 39 GeV 0-10% **PHENIX** 0.07 purple: dN_{ch}‡dr 0.06 black: v₂(η) 0.04 0.03 0.02 v₂{EP} (±3.6%) v₂{EP} (±1.8%) • $v_2\{EP\}$ (±0.3%) 0.01 $dN_{ch}/d\eta \times 0.0030$ $dN_{cb}/d\eta \times 0.0025$ $dN_{cb}/d\eta \times 0.0020$ See more at session 'Phase diagram and search for the critical point' 10:20am 16th by Darren McGlinchey Energy Decreases

- Scaling holds, except at lower energy backward rapidity
- v2(η) contains non-flow
- Flow & non-flow anti-correlation?

The event plane is measured in -3.0 $< \eta <$ -1.0

Wide rapidity range

Analysis methods for Flow

Two - particle correlation method

Pairs:
$$\frac{dN}{d\Delta\phi} \propto 1 + \sum_{n} 2v_{n}^{a}v_{n}^{b}\cos(n\Delta\phi)$$
 2PC method

Event plane method:

$$\frac{dN}{d\phi} = 1 + \sum_{n} 2v_n \cos(n(\phi - \Psi_n))$$

Multi-particle correlation method:

$$\langle 2 \rangle \equiv \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle \equiv \frac{1}{P_{M,2}} \sum_{i,j}' e^{in(\phi_i - \phi_j)},$$

$$\langle 4 \rangle \equiv \left\langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle$$

$$\equiv \frac{1}{P_{M,4}} \sum_{i,j,k,l}' e^{in(\phi_i + \phi_j - \phi_k - \phi_l)},$$

$v_2(p_T)$ and $v_3(p_T)$ for hadrons

$$v_2^{p+{\rm Au}} < v_2^{d+{\rm Au}} \approx v_2^{3{\rm He+Au}},$$

 $v_3^{p+{\rm Au}} \approx v_3^{d+{\rm Au}} < v_3^{3{\rm He+Au}}.$

- Hydrodynamics can efficiently translate the initial geometric ϵ_n 's into v_n 's
- Rule out initial moment correlation picture where we expect:

$$v_n^{p+\operatorname{Au}} > v_n^{d+\operatorname{Au}} > v_n^{3\operatorname{He+Au}},$$

arxiv:1805.02973

Eccentricity distribution

- High skewness in p+Au, deviates from Gaussian
- Additional flow fluctuation in p+Au must take place

Phys. Rev. Lett. 120, 062302 (2018)

v₂(p_T) in different centrality bins

dN_{ch}/dη vs centrality in p+Au

arXiv:1712.02618 [hep-ph]

- Wounded Quark Model: Heavy-Ion collisions consists of independent quark-quark collisions
- Assuming a common quark source

dN_{ch}/dη in BES

Phys. Rev. C 96, 064905 (2017)

$dN_{ch}/d\eta$ vs $v_2(\eta)$ in small systems

- Hydro describes the shape well, although deviation in the very backward region
- All the small system dN_{ch}/dη scales with N_{part}

$v_2(\eta)$ and $dN_{ch}/d\eta$ in models

- Bozek model is a hydrodynamics model
- The trend in data is well captured by AMPT/Hydro model

Multi-particle correlation in Pb+Pb and p+Pb

v₂(η) and v₂(centrality) for hadrons

