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Fluctuations in heavy-ion collisions 
•  Event-by-event fluctuations of particle multiplicities are used to study properties and the phase 

structure of strongly-interacting matter 
•  In heavy-ion collisions at the LHC:  

–  test lattice QCD predictions at µB = 0 
–  close to 2nd-order phase transition for vanishing quark masses → signs of criticality? 
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in terms of the three-dimensional OðNÞ models. A dimen-
sional reduction is applicable because the Goldstone
modes are light in this region. Based on the OðNÞ model
analysis, the quark mass dependence of the chiral conden-
sate is expected to have the form [72–75]

h !c c ilðT;mlÞ ¼ h !c c ilð0Þ þ c2ðTÞ
ffiffiffiffiffiffi
ml

p þ . . . ; (33)

as has been confirmed in numerical simulations with the p4
action on N! ¼ 4 lattices [65]. Consequently for T < T0

c ,

there is a m%1=2
l singularity in the chiral susceptibility in

the limit of zero quark mass which explains the rise in
"l;disc=T

2.
A second feature of the data is shown in Fig. 10 (right)

which compares data for the asqtad action on lattices of
different N! atml=ms ¼ 0:2 and 0.1. Open (filled) symbols
denote data on N! ¼ 6 (N! ¼ 8) lattices. The data show a
shift towards smaller temperature values of both the peak
and the rapidly dropping high temperature part when the

lattice spacing is reduced. The data also show that the
variation of the shape of the susceptibility above the peak
is weakly dependent on the quark mass. This is expected as
"l is the derivative of the chiral condensate with respect to
the mass which, as shown in Fig. 8, is almost linear in the
quark mass in this temperature regime. Third, the data in
Fig. 10 (right) show that the height of the multiplicatively
renormalized disconnected chiral susceptibility at fixed
ml=ms is similar for N! ¼ 6 and N! ¼ 8 lattices. This
lack of increase in height with N! supports the hypothesis
that there are no remaining additive divergent contributions
in the disconnected part of the chiral susceptibility.
In Fig. 11, we compare, for ml=ms ¼ 0:05, the discon-

nected part of the chiral susceptibility including the multi-
plicative renormalization factor Z". We note three features
in the data. First, the variation in the position of the peak
for the asqtad action is larger between N! ¼ 8 and 12 than
for the HISQ/tree action between N! ¼ 6 and 8. Second,
the peak height increases for the HISQ/tree data and
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FIG. 11 (color online). The disconnected part of the chiral susceptibility for the asqtad and HISQ/tree actions, including the
multiplicative renormalization constant discussed in the text, is shown for ml ¼ ms=20 and different N!. In the right panel, the same
data are plotted using fK to set the scale. Plotted this way they show much smaller variation with N!.
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FIG. 10 (color online). The disconnected part of the chiral susceptibility, including multiplicative renormalization, calculated on
N! ¼ 8 lattices for the p4 (left) and asqtad (right) actions at three light quark masses. The figure on the right also shows asqtad data
from N! ¼ 6 lattices as open symbols.
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Connecting theory to experiment 
•  Thermodynamic susceptibilities χ 

–  describe the response of a thermalized system to changes in external conditions, fundamental 
properties of the medium 

–  can be calculated within lattice QCD 
–  within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the 

number of conserved charges: electric charge, strangeness, baryon number 
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ΔNB = NB − NB

Experiment:  
moments of net 

particle multiplicity 
distributions 

acceptance of the 
measurement 

“particle bath” 

χn
B =

∂n P /T 4( )
∂ µB /T( )n

Theory: 
susceptibilities 
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Experiment:  
event-by-event 

volume fluctuations,  
global conservation 

laws 

Theory:  
fixed volume,  

particle bath in GCE 
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What we have learned so far? What’s next? 
•  Second moments of net-pions, 

net-kaons, net-protons measured 
as a function of centrality and Δη 

•  Deviation of net-protons from Skellam 
baseline fully accounted for by global 
baryon number conservation 

 

 

•  Higher moments in ALICE!   

•  Correlated fluctuations of net-charge, net-
strangeness, net-baryon number 
–  Access off-diagonal elements, mixed 

derivatives χBS, χBQ, χQS 
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Why measure net-Λ fluctuations? 

•  Explore correlated fluctuations of baryon number and strangeness 
•  Critical fluctuations not expected for second moments, establish baseline for future 

measurements of higher moments in the strangeness sector 
•  Improve understanding of net-baryon fluctuations 

–  different contributions from resonances, etc, than in net-proton measurement 
•  Λs can be “added” to net-proton or net-kaon results to get closer to net-baryon and net-

strangeness fluctuations 

•  The challenge: event-by-event particle identification, signal extraction of Λ→pπ complicated 
by significant combinatorial background 

•  Proposed solution: the Identity Method 
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Identity Method for π, K, p identification 
•  For any value of TPC dE/dx, probability that a 

particle is a π, K, p, is known from inclusive 
distribution 

•  Particles are identified statistically, weights (w) 
are assigned according to probability that 
particle is of a given species 

•  Calculate sum of weights (W) instead of sum  
of particles (N) in a given event 

•  Find moments of W distribution, then transform 
into true moments 

•  Identity Method makes it possible to account for 
misidentification/impurity without lowering 
efficiency by imposing strict selection cuts 
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Identity Method for Λ  
•  For any value of minv, probability that a particle 

is a Λ or combinatoric pπ pair is known from 
inclusive distribution 

•  Identity Method formalism can be applied  
for four ‘species’:  
Λ, Λ, combinatoric pπ-, combinatoric pπ+ 

•  Identity Method makes it possible to 
account for large combinatoric background 

•  Efficiency (ε ~10-30%) and secondary 
contamination (δ ~ 20-35%) corrections 
performed under binomial assumption  
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Results: Net-Λ fluctuations  
in Pb-Pb collisions at √sNN = 5.02 TeV 
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Centrality dependence of 1st moments 
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Centrality dependence of 2nd moments 

•  If multiplicity distributions of Λ and Λ are Poissonian  
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Centrality dependence of net-Λ 2nd moments 

•  If multiplicity distributions of Λ and Λ are Poissonian  
 
     → if uncorrelated, Skellam distribution for net-Λ 

•  Small deviations from Skellam baseline 
–  correlation term?  non-Poissonian Λ or Λ 

distributions?  critical fluctuations? 
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Comparison to HIJING 

•  HIJING does not describe strangeness production well 
–  underestimates C1 and C2 by factor ~4 

•  C2(Λ-Λ)/C2(Skellam) ratio agrees with data 
–  coincidence?  or due to description of fluctuations  

and resonance contributions in HIJING? 
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Comparison to net-protons 

•  Qualitatively similar results for net-protons  
–  note different kinematic range 
–  different contributions from resonance decays 
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P.	Braun-Munzinger,	A.	Rustamov,	J.	Stachel,	
NPA	960	(2017)	114,	arXiv:1612.00702	[nucl-th]		

•  Model including volume fluctuations and global baryon 
number conservation fully describes deviations from 
Poisson/Skellam expectation for net-protons 
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Δη dependence in central collisions 
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•  Small Δη → Poissonian fluctuations, ratio to 
Skellam ~1 

•  Large Δη → global baryon number and strangeness 
conservation effects, ratio to Skellam < 1 

•  Systematic uncertainties are highly correlated  
point-to-point 

•  Δη dependence consistent with effects of baryon 
number conservation 
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Δη dependence, comparison to net-protons 
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•  C2(p-p) fully consistent with Skellam baseline after 
accounting for global baryon number conservation 

•  Similar trends for net-Λ 
–  also strangeness conservation effects should be 

considered 
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Δη dependence in mid-central collisions 
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•  Net-protons results not described by HIJING, but 
net-Λ results are consistent 
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Conclusions 
•  First measurement of second moments of event-by-event net-Λ fluctuations as a function of 

centrality and Δη 
•  Ratio of C2 to Skellam baseline ~0.95-1 

–  qualitative agreement with net-proton measurement 
–  deviation from Skellam understood due to global baryon number and strangeness 

conservation, not critical behavior 
•  Identity Method is applied on minv axis for the first time 
•  Opens new possibilities for future measurements of other particle species and higher moments! 
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Thank you for your attention! 
Any questions?  
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backup 
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Λ reconstruction 
•  Cuts on V0s  

–  V0 radius > 5 cm  
–  DCA of V0 daughters < 1 cm 
–  DCA of daughters to secondary vertex > 0.1 cm 
–  proper lifetime mL/p < 25 cm 
–  pT-dependent cos(θPA) cut 

•  Cuts on daughter tracks 
–  |η| < 0.8 
–  pT,π > 0.15 GeV/c, pT,p > 0.6 GeV/c 
–  nσ < 3 for (anti-)proton 
–  # crossed rows > 70, crossed rows / findable clusters > 0.8 

•  (Anti-)Lambda selection 
–  |η| < 0.5 
–  1 < pT < 4 GeV/c 
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