

## Bose-Einstein correlations and bb correlations in p-p collisions with LHCb

Bartosz Małecki, on behalf of the LHCb Collaboration Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland



Quark Matter 2018 Venice, 16.05.2018

#### Outline



- LHCb detector
- Bose-Einstein correlations
- study of bb correlations
- summary

#### LHCb detector



- single-arm spectrometer designed mainly to study CP violation in B physics
- fully instrumented in  $2 < \eta < 5$  -> can serve as a **general purpose detector**
- complementary results wrt other LHC experiments



- $\Delta p/p \sim 0.5\%$ -1.0% between 5-200 GeV/c
- impact parameter resolution of 20 μm
- good PID separation up to 100 GeV (misID ( $\pi$ ->K) ~ 5%)





JINST 3 (2008) S08005, IJMPA 30 (2015) 1530022

#### **Bose-Einstein correlations**

[JHEP 12 (2017) 025]

#### **Motivation**



#### **HBT** interferometry in particle physics

• correlations in four-momenta  $(q_1, q_2)$  of indistinguishable particles emitted from the same source:

$$Q = \sqrt{-(q_1 - q_2)^2}$$

- due to symmetrization (Bose-Einstein correlations BEC)
   or antisymmetrization (Fermi-Dirac correlations FDC) of the total
   wave function
- useful tool to probe the spatial and temporal structure of the hadron emission volume
- many results on BEC from SPS, LEP, RHIC, LHC (ALICE, ATLAS, CMS)
- LHCb measurement in a unique acceptance region

#### Correlation function



correlation function (experimentally):

$$C_2(Q) = \frac{N(Q)^{SAME}}{N(Q)^{REF}}$$

distribution for pairs of samesign pions from same PV [BEC effect present]

distribution for reference sample [no BEC effect]

- **event-mixed reference sample** is used:
  - pairs of pions from different events from PVs with same VELO track multiplicity
  - other correlations also removed -> construct double ratio (next slide)
- in this analysis Levy parametrization + long-range correlations:

$$C_2(Q) = N(1 \pm \lambda e^{-RQ}) * (1 + \delta Q)$$

R – radius of a spherical static source  $\lambda$  – chaoticity parameter (0 – coherent source, 1 – chaotic emission) N – normalization factor  $\delta$  – long-range correlations



#### Double ratio



• **double ratio**  $r_d(Q)$  – an improved correlation function:

$$r_d(Q) = \frac{C_2(Q)^{DATA}}{C_2(Q)^{MC}}$$
BEC effect not simulated in MC

- MC correlation function contains **similar pattern of distortions** as correlation function for data, therefore constructing double ratio:
  - reduces possible imperfections of the reference sample
  - eliminates second order effects to large extent
  - corrects for long-range correlations (if properly simulated)
- Coulomb effect is not simulated in MC corrected by applying **Gamov** penetration factor  $G_2(Q)$  to the Q distribution for signal pairs in data:

$$G_2(Q) = \frac{2\pi\zeta}{e^{2\pi\zeta}-1}$$
, where  $\zeta = \pm \frac{\alpha m}{Q}$ 

#### Event multiplicity bins



- BEC parameters depend on total multiplicity of an event
- VELO track multiplicity  $(N_{ch})$  is a good probe of that quantity
- PVs are split into 3 multiplicity bins based on N<sub>ch</sub>
- activity classes are defined as fractions of  $N_{ch}$  distribution (relative way):
  - independent of specific experiment features (e.g. efficiency, acceptance)
- **unfolding of**  $N_{ch}$  was also performed, which allows for comparison between experiments after taking into account different  $\eta$  acceptances (model-dependent)



| JHEP 12 (2017) 025 |
|--------------------|
|--------------------|

| VELO N <sub>ch</sub> | activity class | unfolded N <sub>ch</sub> |  |  |
|----------------------|----------------|--------------------------|--|--|
| 5-10                 | (52-100)%      | 8-18                     |  |  |
| 11-20                | (15-52)%       | 19-35                    |  |  |
| 21-60                | (0-15)%        | 36-96                    |  |  |

track multiplicities unfolded using PYTHIA 8 (in  $2 < \eta < 5$ )

#### Results (I)



fits to double ratio with Levy parametrization:

$$C_2(Q) = N(1 \pm \lambda e^{-RQ}) * (1 + \delta Q)$$

clear enhancement due to BEC effect observed in Q->0

| Activity class | R [fm]                   | λ                        |
|----------------|--------------------------|--------------------------|
| low            | $1.01 \pm 0.01 \pm 0.10$ | 0.72 ± 0.01 ± 05         |
| medium         | $1.48 \pm 0.02 \pm 0.17$ | $0.63 \pm 0.01 \pm 0.05$ |
| high           | $1.80 \pm 0.03 \pm 0.16$ | 0.57 ± 0.01 ± 0.03       |

Results show a trend compatible with previous observations at LEP and other LHC experiments:

- source size increases with activity
- $\lambda$  decreases with growing activity

Systematic uncertainty (~10%) dominated by generator tunings and pile-up effects.

JHEP 12 (2017) 025



#### Results (II)



Correspondence of unfolded  $N_{ch}$  bins between ATLAS ( $|\eta| < 2.5$ ,  $p_T > 0.1$  GeV/c) and LHCb (2 <  $\eta$  < 5) acceptances at 7 TeV found using PYTHIA 8:

- R and  $\lambda$  parameters measured in the forward region are slightly lower than results for central rapidity obtained by ATLAS
- need to measure the BEC parameters using a full 3D analysis to perform a more detailed comparison





ATLAS: Eur. Phys. J. C75 (2015) 466

LHCb: JHEP 12 (2017) 025

## Study of bb correlations

[JHEP 11 (2017) 030]

#### **Motivation**



- heavy-flavour production important tests of QCD
- inclusive single-heavy-flavour production limited sensitivity to higher-order QCD corrections (e.g. gluon splitting, flavour-excitation)
- those contributions can be studied in correlations between heavy quark and antiquark
- correlation measurements for  $b\bar{b}$  were done at SPS, Tevatron and LHC
- LHCb unique acceptance coverage + detector dedicated for B physics





#### Analysis method



• beauty hadrons from inclusive decays into  $J/\psi$ :

b -> J/
$$\psi$$
X, where J/ $\psi$  ->  $\mu^+\mu^-$ 

• signal yield determined from a fit to the 2D mass distribution of  $\mu^+\mu^-$  pairs:



#### Normalized differential cross-sections



• for a number of kinematic variables, **normalized differential cross-sections** are presented, defined here in a generic way:

$$\frac{1}{\sigma} \frac{d\sigma}{dv} \equiv \frac{1}{N^{cor}} \frac{\Delta N_i^{cor}}{\Delta v_i}$$

 $N^{cor}$  - total number of efficiency-corrected signal candidates  $\Delta N_i^{\ cor}$  - number of efficiency-corrected signal candidates in bin i of width  $\Delta v_i$ 

- kinematic variables are defined below:
  - $|\Delta \Phi^*|$  difference in azimuthal angle of 2 beauty hadrons\*\*
  - $|\Delta \eta^*|$  difference in pseudorapidity of 2 beauty hadrons\*\*
  - $A_T \equiv (p_T^{J/\psi_1}-p_T^{J/\psi_2})/(p_T^{J/\psi_1}+p_T^{J/\psi_2})$  asymmetry between  $p_T$  of J/ $\psi$  mesons
  - $-m^{J/\psi J/\psi}, p_T^{J/\psi J/\psi}, y^{J/\psi J/\psi}$  mass,  $p_T$  and rapidity of the J/ $\psi$  pair

Systematic uncertainty is much smaller than the statistic one and can be neglected (most of systematic sources cancel out in the  $\Delta N_i^{\ cor}/N^{cor}$  ratio).

\*\*) both  $\Phi^*$ ,  $\eta^*$  are estimated from the direction of the vector between PV to the J/ $\psi$  decay vertex

#### Results



- distributions are compared with expectations from PYTHIA (@LO) and POWHEG (@NLO), as well as an artificial data-driven model of uncorrelated bb production
- both PYTHIA and POWHEG well describe the data small NLO effects compared to the experimental precision
- small contribution from gluon splitting at low  $|\Delta\Phi^*|$  (otherwise than for  $c\overline{c}$ ) -> expected, since it is suppressed due to a large mass of beauty quark

JHEP 11 (2017) 030



#### Summary



#### Bose-Einstein correlations studied for same-sign pions at 7 TeV

- first measurement in the forward region  $2 < \eta < 5$
- observed trends compatible with previous results and predictions
- BEC parameters in the forward region slightly lower wrt central rapidities
- this study shows the LHCb potential in BEC analyses

**BEC** analysis for p-Pb collisions ongoing

#### Kinematic correlations for $b\bar{b}$ pairs from p-p collisions at 7 and 8 TeV

- observed correlations agree with both PYTHIA (@LO) and POWHEG (@NLO), suggesting that the NLO effects in  $b\bar{b}$  production are small compared to the experimental precision
- however, discriminating theory predictions is not possible with the present data - future measurements with larger samples needed

# Thank you for your attention



18/16

## **BACKUP SLIDES**

#### BEC - track selection



relatively loose selection of pions

#### Long track traversing whole detector

- loose particle identification cuts on pions
- $2 < \eta < 5$
- good track quality  $(\chi^2/ndf < 2)$
- p > 2 GeV/c
- $p_{\tau} > 0.1 \, \text{GeV/}c$
- *IP* < 0.4 mm
- cut on probability to be a ghost track



- correlation function is not sensitive to single track efficiency, but can be sensitive to two-track effects such as cloned or ghost tracks\*
- ghosts/clones not perfectly simulated -> cannot be fully corrected by DR
- if tracks share all same VELO hits -> keep one with best  $\chi^2$  effect from clones/ghosts under control for  $Q>0.05~{\rm GeV}/c^2$
- clones also suppressed by removing tracks with small tracks slope differences
- effects from ghosts present both in same-sign pairs and unlike-sign pairs controlled by looking at DR for unlike-sign pairs (no BEC effect)

<sup>\*</sup> clones – fake tracks reconstructed from hits originating mainly from a single particle ghosts – fake tracks reconstructed from hits deposited by multiple particles

### BEC - systematics



| Source                  | Low a             | ctivity             | Medium            | activity            | High a            | ctivity             |
|-------------------------|-------------------|---------------------|-------------------|---------------------|-------------------|---------------------|
|                         | $\Delta R \ [\%]$ | $\Delta\lambda$ [%] | $\Delta R \ [\%]$ | $\Delta\lambda$ [%] | $\Delta R \ [\%]$ | $\Delta\lambda$ [%] |
| Generator tunings       | 6.6               | 4.3                 | 8.9               | 3.5                 | 6.5               | 1.5                 |
| PV multiplicity         | 5.9               | 5.8                 | 6.1               | 4.5                 | 3.9               | 4.3                 |
| PV reconstruction       | 1.8               | 0.1                 | 1.4               | 1.2                 | 0.1               | < 0.1               |
| Fake tracks             | 0.4               | 1.1                 | 1.7               | 3.9                 | 1.1               | 0.8                 |
| PID calibration         | 1.3               | 0.3                 | 0.8               | 0.6                 | 2.7               | 0.9                 |
| Requirement on pion PID | 2.9               | 1.8                 | 1.6               | 0.1                 | 1.3               | 0.1                 |
| Fit range at low- $Q$   | 1.2               | 1.0                 | 1.2               | 1.5                 | 1.8               | 2.7                 |
| Fit range at high- $Q$  | 1.8               | 0.1                 | 2.1               | 0.8                 | 2.4               | 1.4                 |
| Total                   | 9.8               | 7.6                 | 11.4              | 7.3                 | 8.8               | 5.6                 |

#### BEC - results







## $b\bar{b}$ - results (I)





## $b\bar{b}$ - results (II)





## $b\bar{b}$ - systematics



| Source                | Uncertainty [%] |
|-----------------------|-----------------|
| Signal determination  | < 1.0           |
| Muon identification   | 0.4             |
| Track reconstruction  | 1.7             |
| Trigger               | 1.2             |
| Simulated sample size | < 0.1           |